请观察下列算式,找出规律并填空.11×2=1-12,12×3=12-13,13×4=13-14,14×5=14-15.
(1)则第10个算式是 110×11=110-111,110×11=110-111,,第n个算式是 1n(n+1)=1n-1n+11n(n+1)=1n-1n+1.根据以上规律解读以下两题:
(2)求11×2+12×3+13×4+⋯+12021×2022的值;
(3)若有理数a,b满足|a-2|+|b-4|=0,试求:
1ab+1(a+2)(b+2)+1(a+4)(b+4)+⋯+1(a+2018)×(b+2018)的值.
1
1
×
2
=
1
-
1
2
1
2
×
3
=
1
2
-
1
3
1
3
×
4
=
1
3
-
1
4
1
4
×
5
=
1
4
-
1
5
1
10
×
11
=
1
10
-
1
11
1
10
×
11
=
1
10
-
1
11
1
n
(
n
+
1
)
=
1
n
-
1
n
+
1
1
n
(
n
+
1
)
=
1
n
-
1
n
+
1
1
1
×
2
+
1
2
×
3
+
1
3
×
4
+
⋯
+
1
2021
×
2022
1
ab
+
1
(
a
+
2
)
(
b
+
2
)
+
1
(
a
+
4
)
(
b
+
4
)
+
⋯
+
1
(
a
+
2018
)
×
(
b
+
2018
)
【答案】,;
1
10
×
11
=
1
10
-
1
11
1
n
(
n
+
1
)
=
1
n
-
1
n
+
1
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/14 7:0:1组卷:177引用:1难度:0.6