已知函数f(x)=x3+bx2+cx(b、c∈R),其导函数为f'(x),
(1)若函数f(x)有三个零点x1、x2、x3,且x1+x2+x3=3,x1x3=-9,试比较f(3)-f(0)与3f'(2)的大小.
(2)若f'(1)=-2,试判断f(x)在区间(0,2)上是否存在极值点,并说明理由.
(3)在(1)的条件下,对任意的m,n∈R,总存在x∈[0,3]使得|f(x)+mx+n|≥t成立,求实数t的最大值.
【答案】(1)f(3)-f(0)=3f′(2);
(2)存在,详细过程见解析;
(3)2.
(2)存在,详细过程见解析;
(3)2.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/23 12:26:7组卷:101引用:3难度:0.3
相似题
-
1.已知函数
,若关于x的不等式f(x)=ln2+x2-x+1对任意x∈(0,2)恒成立,则实数k的取值范围( )f(kex)+f(-12x)>2发布:2025/1/5 18:30:5组卷:299引用:2难度:0.4 -
2.已知函数f(x)=ax3+x2+bx(a,b∈R)的图象在x=-1处的切线斜率为-1,且x=-2时,y=f(x)有极值.
(1)求f(x)的解析式;
(2)求f(x)在[-3,2]上的最大值和最小值.发布:2024/12/29 12:30:1组卷:48引用:4难度:0.5 -
3.已知函数f(x)=
.ex-ax21+x
(1)若a=0,讨论f(x)的单调性.
(2)若f(x)有三个极值点x1,x2,x3.
①求a的取值范围;
②求证:x1+x2+x3>-2.发布:2024/12/29 13:0:1组卷:199引用:2难度:0.1