阅读与思考
如图1,点E是四边形ABCD的边BC,上一点,分别连接EA,ED,把四边形ABCD分成三个三角形,如果其中有两个三角形相似,那么我们把点E叫做四边形ABCD的边BC上的“相似点”;如果这三个三角形都相似,那么我们把点E叫做四边形ABCD的边BC上的“强相似点”.
任务一:如图1,∠B=∠C=∠AED=α°,试判断点E是否是四边形ABCD的边BC上的“相似点”,并说明理由;
任务二:如图2,矩形ABCD的四个顶点A,B,C,D均在正方形网格的格点上,试在图中画出矩形ABCD的边BC上的强相似点;
任务三:如图3,矩形ABCD中,AB=6,将矩形ABCD沿CE折叠,点D落在AB边上的点F处,若点F是四边形ABCE的边AB上的强相似点,求BC.

【答案】任务一:点E是四边形ABCD的边BC上的“相似点”,理由见解答;
任务二:见解答;
任务三:3.
任务二:见解答;
任务三:3
3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:217引用:3难度:0.4
相似题
-
1.我们把能二等分多边形面积的直线称为多边形的“好线”,请用无刻度的直尺作出图(1)、图(2)的“好线”.其中图(1)是一个平行四边形,图(2)由一个平行四边形和一个正方形组成.(保留作图痕迹,不写作法)
发布:2024/12/23 13:30:1组卷:205引用:7难度:0.7 -
2.在3×3的正方形格点图中有格点△ABC,请在下图1~3中分别按下列要求画出一个不同于△ABC的格点三角形.
(1)在图1中画出的格点△ABD,且与△ABC面积相等.
(2)在图2中画出的格点△ACE,且与△ABC面积相等.
(3)在图3中画出的格点△BCF,且是一个轴对称图形.发布:2024/12/23 16:30:2组卷:46引用:3难度:0.6 -
3.如图,网格中的每个小正方形的边长都是1,线段交点称作格点.
(1)画出△ABC的高CD;
(2)直接写出△ABC的面积是;
(3)在线段AB上找一点E(点E在格点上),连结线段CE,使得线段CE将图中△ABC分成面积相等的两部分.发布:2024/12/23 16:0:2组卷:65引用:3难度:0.6