在①AD=AE,②∠ABE=∠ACD,③FB=FC这三个条件中选择其中一个,补充在下面的问题中,并完成问题的解答.
问题:如图,在△ABC中,∠ABC=∠ACB,点D在AB边上(不与点A,点B重合),点E在AC边上(不与点A,点C重合),连接BE,CD,BE与CD相交于点F.若 选择条件①或②或③选择条件①或②或③,求证:BE=CD.
注:如果选择多个条件分别作答,按第一个解答计分.
【考点】全等三角形的判定与性质.
【答案】选择条件①或②或③
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/8 7:0:2组卷:112引用:3难度:0.6
相似题
-
1.如图,已知AD,AF分别是钝角△ABC和钝角△ABE的高,如果AD=AF,AC=AE.
(1)求证:BC=BE;
(2)若∠DBF=∠BAC=30°,AC=4,求AD的长.发布:2025/6/8 7:30:1组卷:76引用:1难度:0.5 -
2.如图,在△ABC中,CD是△ABC的角平分线,DE⊥BC于E,F,G分别是边AC,BC上的点,连接DF,DG,若DF=DG,△CDF和△DEG的面积分别为50和15,则△CDG的面积为 .
发布:2025/6/8 7:30:1组卷:436引用:5难度:0.5 -
3.已知AB=AC,BD=CE,求证:∠B=∠C.
发布:2025/6/8 9:0:1组卷:1010引用:12难度:0.8