足球射门时,在不考虑其他因素的条件下,射点到球门AB的张角越大,射门越好.当张角达到最大值时,我们称该射点为最佳射门点.通过研究发现,如图1所示,运动员带球在直线CD上行进时,当存在一点Q,使得∠CQA=∠ABQ(此时也有∠DQB=∠QAB)时,恰好能使球门AB的张角∠AQB达到最大值,故可以称点Q为直线CD上的最佳射门点.
(1)如图(2)所示,AB为球门,当运动员带球沿CD行进时,Q1,Q2,Q3为其中的三个射门点,则在这三个射门点中,最佳射门点为点 Q2Q2;
(2)如图3所示,是一个矩形状的足球场,AB为球门,CD⊥AB于点D,AB=3a,BD=a.某球员沿CD向球门AB进攻,设最佳射门点为点Q.
①用含a的代数式表示DQ的长度并求出tan∠AQB的值;
②已知对方守门员伸开双臂后,可成功防守的范围为54a,若此时守门员站在张角∠AQB内,双臂张开MN垂直于AQ进行防守,求MN中点与AB的距离至少为多少时才能确保防守成功.(结果用含a的代数式表示)

5
4
【考点】四边形综合题.
【答案】Q2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:480引用:2难度:0.1
相似题
-
1.已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB,DC(或它们的延长线)于点M,N,AH⊥MN于点H.
(1)如图①,当∠MAN绕点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:.
(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;
(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,探求AH满足的数量关系.(可利用(2)得到的结论)发布:2025/6/17 11:30:1组卷:879引用:1难度:0.3 -
2.如图在平面直角坐标系中,O是坐标原点,矩形OACB的顶点A,B分别在x轴、y轴上,已知OA=3,点D为y轴上一点,其坐标为(0,1),若连接CD,则CD=5,点P从点A出发以每秒1个单位的速度沿线段A-C-B的方向运动,当点P与点B重合时停止运动,运动时间为t秒
(1)求B,C两点坐标;
(2)求△OPD的面积S关于t的函数关系式;
(3)当点D关于OP的对称点E落在x轴上时,请直接写出点E的坐标,并求出此时的t值.发布:2025/6/17 10:30:2组卷:135引用:3难度:0.1 -
3.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.
(1)证明:∠BAC=∠DAC,∠AFD=∠CFE;
(2)若AB∥CD,试证明四边形ABCD是菱形;
(3)在(2)的条件下,若BE⊥CD,试证明∠EFD=∠BCD.发布:2025/6/18 8:30:2组卷:215引用:3难度:0.1