试卷征集
加入会员
操作视频

把函数C1的图象绕点P(m,0)旋转180°,得到新函数C2的图象,我们称C2是C1关于点P的相关函数.C2的图象的对称轴与x轴交点坐标为(t,0).
(1)若函数C1:y=ax2-2ax-3a(a≠0),求t的值(用含m的代数式表示).
(2)如图1,若函数C1:y=ax2+bx(a≠0)经过点A(-4,0)、B(-1,3)两点,点A在直线l:y=kx-
12
5
上,D是函数C1的图象上的一点,设D点的横坐标为n(-
17
5
<n<-
12
5
),连接DO并延长,交函数C2图象于点E,交直线l于点M,若DE=4EM,求n的值.
(3)如图2,若函数C1:y=ax2-6ax+5a(a≠0),若a=1,m=1,当k-1≤x≤k时,函数C1的最小值为y1,函数C2的最大值为y2,若y1-y2=6,请直接写出k的值.

【考点】二次函数综合题
【答案】(1)t=2m-1;
(2)n=
-
17
-
129
10

(3)
14
或3-
14
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:324引用:1难度:0.2
相似题
  • 1.在平面直角坐标系中,抛物线y=ax2+bx+3与x轴的两个交点分别为A(-3,0)、B(1,0),过顶点C作CH⊥x轴于点H.
    (1)直接填写:a=
    ,b=
    ,顶点C的坐标为

    (2)在y轴上是否存在点D,使得△ACD是以AC为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由.

    发布:2025/6/17 23:30:2组卷:163引用:1难度:0.4
  • 2.如图,在平面直角坐标系中,有抛物线y=ax2+bx+3,已知OA=OC=3OB,动点P在过A、B、C三点的抛物线上.
    (1)求抛物线的解析式;
    (2)求过A、B、C三点的圆的半径;
    (3)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标,若不存在,说明理由;
    (4)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线,垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.

    发布:2025/6/18 12:30:1组卷:410引用:2难度:0.3
  • 3.如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与A重合),过点P作PD∥y轴交直线AC于点D.
    (1)求抛物线的解析式;
    (2)求点P在运动的过程中线段PD长度的最大值;
    (3)△APD能否构成直角三角形?若能,请直接写出所有符合条件的点P坐标;若不能,请说明理由.

    发布:2025/6/18 0:30:4组卷:1978引用:7难度:0.2
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正