一次数学综合实践活动中,聪明的小倩同学发现关于三角形角平分线的一个结论.
如图1,已知AD是三角形ABC的角平分线,可以得到ABAC=BDCD.小倩同学的证明思路是这样的:如图2,过点C作CE∥AB,交AD的延长线于点E,通过三角形的相似可以证明ABAC=BDCD.
(1)请根据小倩同学的思路,写出证明该结论的过程.
(2)利用以上结论进行计算:在图1中,已知AB=3,AC=6,BC=8,则 BD=8383;
(3)在图3中,已知∠B=45°,∠ACB+∠D=90°,BC=2,CD=4,求AD的长.
AB
AC
=
BD
CD
AB
AC
=
BD
CD
8
3
8
3
【考点】相似形综合题.
【答案】
8
3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/4 8:0:9组卷:114引用:1难度:0.3
相似题
-
1.如图1,在△ABC中,∠BCA=90°,AC=3,BC=4,点P为斜边AB上一点,过点P作射线PD⊥PE,分别交AC、BC于点D,E.
(1)问题产生
若P为AB中点,当PD⊥AC,PE⊥BC时,=;PDPE
(2)问题延伸
在(1)的情况下,将若∠DPE绕着点P旋转到图2的位置,的值是否会发生改变?如果不变,请证明;如果改变,请说明理由;PDPE
(3)问题解决
如图3,连接DE,若△PDE与△ABC相似,求BP的值.发布:2025/6/14 0:0:1组卷:966引用:6难度:0.1 -
2.如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AD=CD,O是对角线AC的中点,联结BO并延长交边CD或边AD于点E.
(1)当点E在CD上,
①求证:△DAC∽△OBC;
②若BE⊥CD,求的值;ADBC
(2)若DE=2,OE=3,求CD的长.发布:2025/6/13 20:0:1组卷:4162引用:7难度:0.4 -
3.从三角形(不是等腰三角形)的一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中,一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.
(1)如图①,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线;
(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数;
(3)如图②,在△ABC中,AC=3,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.3发布:2025/6/13 23:0:1组卷:439引用:2难度:0.2