在相似的复习课中,同学们遇到了一道题:已知∠C=90°,请设计三种不同方法,将Rt△ABC分割成四个小三角形,使每个小三角形与原三角形相似.
(1)甲同学设计了如图1分割方法:D是斜边AB的中点,过D分别作DE⊥AC,DF⊥BC,请判断甲同学的做法是否正确,并说明理由.
(2)乙同学设计了如图2分割方法,过点D作FD⊥AB,DE⊥BC,连结EF,易证△ADF∽△ACB,△DEB∽△ACB,但是只有D在AB特殊位置时,才能证明另两个三角形与原三角形相似,李老师通过几何画板,发现∠A=30°时,ADDB=34,∠A=45°时,ADDB=12,∠A=60°时,ADDB=14.猜测对于任意∠A,当ADDB=AC2AB2AC2AB2(用AC,BC或AB相关代数式表示),结论成立.请补充条件并证明.
(3)在普通三角形中,显然连结三角形中位线分割成四个小三角形与原三角形相似.你能参考乙同学的分割方法找到其他分割方法吗?请做出示意图并作适当分割说明(不要求证明过程).
AD
DB
=
3
4
AD
DB
=
1
2
AD
DB
=
1
4
AD
DB
A
C
2
A
B
2
A
C
2
A
B
2
【考点】相似形综合题.
【答案】
A
C
2
A
B
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:109引用:1难度:0.1
相似题
-
1.数学课上,王老师出示问题:如图1,将边长为5的正方形纸片ABCD折叠,使顶点A落在边CD上的点P处(点P与C、D不重合),折痕为EF,折叠后AB边落在PQ的位置,PQ与BC交于点G.
(1)观察操作结果,在图1中找到一个与△DEP相似的三角形,并证明你的结论;
(2)当点P在边CD的什么位置时,△DEP与△CPG面积的比是9:25?请写出求解过程;
(3)将正方形换成正三角形,如图2,将边长为5的正三角形纸片ABC折叠,使顶点A落在边BC上的点P处(点P与B、C不重合),折痕为EF,当点P在边BC的什么位置时,△BEP与△CPF面积的比是9:25?请写出求解过程.发布:2025/6/15 22:0:1组卷:1072引用:9难度:0.2 -
2.如图,AD、BE是△ABC的两条高,过点D作DF⊥AB,垂足为F,FD交BE于M,FD、AC的延长线交于点N.
(1)求证:△BFM∽△NFA;
(2)试探究线段FM、DF、FN之间的数量关系,并证明你的结论;
(3)若AC=BC,DN=12,ME:EN=1:2,求线段AC的长.发布:2025/6/16 11:30:2组卷:851引用:7难度:0.3 -
3.在△ABC中,CD是中线,E,F分别为BC,AC上的一点,连接EF交CD于点P.
(1)如图1,若F为AC的中点,CE=2BE,求的值;DFEC
(2)如图2,设=m,CEBC=n(n<CFAC),若m+n=4mn,求证:PD=PC;12
(3)如图3,F为AC的中点,连接AE交CD于点Q,若QD=QP,直接写出的值.BEEC发布:2025/6/15 15:0:1组卷:334引用:2难度:0.3