已知二次函数f(x)=ax2+bx+c.
(1)若f(x)>0的解集为{x|-3<x<4},解关于x的不等式bx2+2ax-(c+3b)<0;
(2)若对任意x∈R,f(x)≥0恒成立,求ba+c的最大值;
(3)已知b=4,a>c,若y≥0对于一切实数x恒成立,并且存在x0∈R,使得ax20+bx0+c=0成立,求4a2+c22a-c的最小值.
b
a
+
c
a
x
2
0
+
b
x
0
+
c
=
0
4
a
2
+
c
2
2
a
-
c
【答案】(1)(-3,5);
(2)1;
(3)8.
(2)1;
(3)8.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:262引用:6难度:0.3
相似题
-
1.把符号
称为二阶行列式,规定它的运算法则为aamp;bcamp;d.已知函数aamp;bcamp;d=ad-bc.f(θ)=cosθamp;1-λsinθ2amp;cosθ
(1)若,θ∈R,求f(θ)的值域;λ=12
(2)函数,若对∀x∈[-1,1],∀θ∈R,都有g(x)-1≥f(θ)恒成立,求实数λ的取值范围.g(x)=x2amp;-11amp;1x2+1发布:2024/12/29 10:30:1组卷:14引用:6难度:0.5 -
2.对于任意x1,x2∈(2,+∞),当x1<x2时,恒有
成立,则实数a的取值范围是alnx2x1-2(x2-x1)<0发布:2024/12/29 7:30:2组卷:64引用:3难度:0.6 -
3.设函数f(x)=ex(2x-1)-ax+a,其中a<1,若存在唯一的整数x0,使得f(x0)<0,则a的取值范围是.
发布:2024/12/29 5:0:1组卷:547引用:37难度:0.5