如图,Rt△ABC中,∠C=90°,P是CB边上一动点,连接AP,作PQ⊥AP交AB于Q.已知AC=3cm,BC=6cm,设PC的长度为x cm,BQ的长度为y cm.
小青同学根据学习函数的经验对函数y随自变量x的变化而变化的规律进行了探究.
下面是小青同学的探究过程,请补充完整:
(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y的几组对应值;
x/cm | 0 | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | 6 |
y/cm | 0 | 1.56 | 2.24 | 2.51 | m | 2.45 | 2.24 | 1.96 | 1.63 | 1.26 | 0.86 | 0 |
m的值约为
2.6
2.6
cm;(2)在平面直角坐标系中,描出以补全后的表格中各组数值所对应的点(x,y),画出该函数的图象;

(3)结合画出的函数图象,解决问题:
①当y>2时,对应的x的取值范围约是
0.8<x<3.5
0.8<x<3.5
;②若点P不与B,C两点重合,是否存在点P,使得BQ=BP?
不存在
不存在
(填“存在”或“不存在”)【考点】二次函数综合题.
【答案】2.6;0.8<x<3.5;不存在
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/5/24 23:0:1组卷:561引用:6难度:0.4
相似题
-
1.如图,在平面直角坐标系中,抛物线y=ax2+bx-3(a≠0)与x轴交于点A(-2,0)、B(4,0)两点,与y轴交于点C.点P、Q分别是AB、BC上的动点,当点P从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动.设P、Q同时运动的时间为t秒(0<t<2).
(1)求抛物线的表达式;
(2)设△PBQ的面积为S,当t为何值时,△PBQ的面积最大,最大面积是多少?
(3)当t为何值时,△PBQ是等腰三角形?发布:2025/5/25 3:0:2组卷:420引用:6难度:0.3 -
2.如图,抛物线y=ax2+bx+c经过A(-1,0)、B(4,0)、C(0,2)三点,点D(x,y)为抛物线上第一象限内的一个动点.
(1)求抛物线所对应的函数表达式;
(2)当△BCD的面积为3时,求点D的坐标;
(3)过点D作DE⊥BC,垂足为点E,是否存在点D,使得△CDE中的某个角等于∠ABC的2倍?若存在,求点D的横坐标;若不存在,请说明理由.发布:2025/5/25 3:0:2组卷:2660引用:5难度:0.3 -
3.如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于C点,OA=2,OC=6,连接AC和BC.
(1)求抛物线的解析式;
(2)点D在抛物线的对称轴上,当△ACD的周长最小时,求点D的坐标;
(3)点E是第四象限内抛物线上的动点,连接CE和BE.求△BCE面积的最大值及此时点E的坐标;发布:2025/5/25 3:0:2组卷:602引用:4难度:0.3