试卷征集
加入会员
操作视频

南师大苏州实验学校高中部2021年12月16日举行了2021“翱翔杯”冬季运动会,其中“夹球接力跑”项目需要男女合作完成.3班代表队共派出3个小组(编号为F1,F2,F3)角逐该项目,每个小组由1名男生和2名女生组成,其中男生单独完成该项目的概率为0.6,女生单独完成该项目的概率为a(0<a<0.4).假设他们参加比赛的机会互不影响,记每个小组能完成比赛的人数为ξ.
(1)证明:在ξ的概率分布中,P(ξ=1)最大;
(2)由于天气原因临时更改比赛规则:每个代表队每次指派一个小组,比赛时间一分钟,如果一分钟内不能完成,则重新指派另一组参赛.3班代表队的领队了解后发现,小组Fi能顺利完成比赛的概率为ti=P(ξ=i)(i=1,2,3),且各个小组能否完成比赛相互独立.请分析领队如何安排小组的出场顺序,并给出证明.(以指派的小组个数的均值最小为安排依据)

【答案】(1)证明见解析;
(2)以F1,F2,F3的顺序安排小组的出场顺序,可以使得指派的小组个数的均值最小,证明见解析.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:30引用:1难度:0.6
相似题
  • 1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
    (Ⅰ)求获得复赛资格的人数;
    (Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
    (Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).

    发布:2024/12/29 13:30:1组卷:134引用:7难度:0.5
  • 2.设离散型随机变量X的分布列如表:
    X 1 2 3 4 5
    P m 0.1 0.2 n 0.3
    若离散型随机变量Y=-3X+1,且E(X)=3,则(  )

    发布:2024/12/29 13:0:1组卷:199引用:6难度:0.5
  • 3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为(  )

    发布:2024/12/29 13:30:1组卷:139引用:6难度:0.7
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正