已知函数f(x)=alnx-ax+1,a∈R.
(1)若经过点(0,0)的直线与函数f(x)的图像相切于点(2,f(2)),求实数a的值;
(2)设g(x)=f(x)+12x2-1,若函数g(x)在区间当[32,4]为严格递减函数时,求实数a的取值范围;
(3)对于(2)中的函数g(x),若函数g(x)有两个极值点为x1,x2(x1≠x2),且不等式g(x1)+g(x2)<λ(x1+x2)恒成立,求实数λ的取值范围.
g
(
x
)
=
f
(
x
)
+
1
2
x
2
-
1
[
3
2
,
4
]
【答案】(1);
(2);
(3)[2ln2-3,+∞).
a
=
1
1
-
ln
2
(2)
[
16
3
,
+
∞
)
(3)[2ln2-3,+∞).
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:41引用:1难度:0.4
相似题
-
1.已知函数
,若关于x的不等式f(x)=ln2+x2-x+1对任意x∈(0,2)恒成立,则实数k的取值范围( )f(kex)+f(-12x)>2发布:2025/1/5 18:30:5组卷:296引用:2难度:0.4 -
2.已知函数f(x)=
.ex-ax21+x
(1)若a=0,讨论f(x)的单调性.
(2)若f(x)有三个极值点x1,x2,x3.
①求a的取值范围;
②求证:x1+x2+x3>-2.发布:2024/12/29 13:0:1组卷:187引用:2难度:0.1 -
3.已知函数f(x)=ax3+x2+bx(a,b∈R)的图象在x=-1处的切线斜率为-1,且x=-2时,y=f(x)有极值.
(1)求f(x)的解析式;
(2)求f(x)在[-3,2]上的最大值和最小值.发布:2024/12/29 12:30:1组卷:47引用:4难度:0.5