某校在体育节期间进行趣味投篮比赛,设置了A,B两种投篮方案.方案A:罚球线投篮,投中可以得2分,投不中不得分;方案B:三分线外投篮,投中可以得3分,投不中不得分.甲、乙两位同学参加比赛,选择方案A投中的概率都为p0(0<p0<1),选择方案B投中的概率都为13,每人有且只有一次投篮机会,投中与否互不影响.
(1)若甲同学选择方案A投篮,乙同学选择方案B投篮,记他们的得分之和为X,P(X≤3)=45,求X的分布列;
(2)若甲、乙两位同学都选择方案A或都选择方案B投篮,问:他们都选择哪种方案投篮,得分之和的均值较大?
1
3
4
5
【考点】离散型随机变量的均值(数学期望).
【答案】(1)分布列见解答;(2)甲、乙两位同学都选择方案B投篮,得分之和的均值较大.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:25引用:2难度:0.5
相似题
-
1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
(Ⅰ)求获得复赛资格的人数;
(Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
(Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).发布:2024/12/29 13:30:1组卷:133引用:7难度:0.5 -
2.设离散型随机变量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 发布:2024/12/29 13:0:1组卷:195引用:6难度:0.5 -
3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为( )
发布:2024/12/29 13:30:1组卷:137引用:6难度:0.7