试卷征集
加入会员
操作视频
当前位置: 试题详情

一个大于1的自然数,除了1和它自身外,不能被其他自然数整除的数叫做质数,否则称为合数.其中,1和0既不是质数也不是合数.数学家欧几里得在《几何原本》中对此进行过详细论述.一个较大自然数是质数还是合数通常用“N法”来判断,主要分为三个步骤:第一步,找出大于N且最接近N的平方数k2;第二步,用小于k的所有质数去除N;第三步,如果这些质数都不能整除N,那么N是质数;如果这些质数中至少有一个能整除N,那么N就是合数.如判断239是质数还是合数?第一步,239<256=162:第二步,小于16的质数有:2、3、5、7、11、13,用2、3、5、7、11、13依次去除239;第三步,发现没有质数能整除239,所以239是质数.
分解质因数就是把一个合数分解成若干个质数的乘积的形式,通过分解质因数可以确定该合数的约数的个数.若N=am×bn×cp…(a,b,c…是不相等的质数,m,n,p…是正整数),则合数N共有(m+1)(n+1)(p+1)…个约数.如8=23,3+1=4,则8共有4个约数;又如12=22×31,(2+1)(1+1)=6,则12共有6个约数.
请用以上方法解决下列问题:
(1)请用“N法”判断397是质数还是合数?
(2)合数200的约数个数是多少?有和200约数个数相同的最小的合数吗,若有,请举例说明,若没有,请说明理由.

【考点】质数与合数
【答案】60.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/12/12 8:0:1组卷:60引用:1难度:0.2
相似题
  • 1.如果一个四位自然数M的千位数字和百位数字相等,十位数字和个位数字之和为8,我们称这样的数为“等合数”,例如:对于四位数5562,∵5=5且6+2=8,∴5562为“等合数”,又如:对于四位数4432,∵4=4但3+2≠8,所以4432不是“等合数”
    (1)判断6627、1135是否是“等合数”,并说明理由;
    (2)已知M为一个“等合数”,且M能被9整除.将M的各个数位数字之和记为P(M),将M的个位数字与十位数字的差的绝对值记为Q(M),并令G(M)=P(M)×Q(M),当G(M)是完全平方数(0除外)时,求出所有满足条件的M.

    发布:2025/6/11 10:0:1组卷:404引用:2难度:0.4
  • 2.已知两个不同的质数p、q满足下列关系:p2-2001p+m=0,q2-2001q+m=0,m是适当的整数,那么p2+q2的数值是(  )

    发布:2025/5/29 9:0:1组卷:151引用:3难度:0.9
  • 3.若三个不同的质数m,n,p满足m+n=p,则mnp的最小值是
     

    发布:2025/5/29 9:30:1组卷:37引用:1难度:0.9
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正