如图1,四边形ABCD是矩形,动点P从B出发,沿射线BC方向移动,作△PAB关于直线PA的对称△PAB'.

(1)若四边形ABCD是正方形,直线PB'与直线CD相交于点M,连接AM.
①如图2,当点P在线段BC上(不包括B和C),说明结论“∠PAM=45°”成立的理由.
②当点P在线段BC延长线上,试探究:结论∠PAM=45°”是否总是成立?请说明理由.
(2)在矩形ABCD中,AB=10,AD=6,当点P在线段BC延长线上,当△PCB'为直角三角形时,直接写出PB的长 10或30或1034-50310或30或1034-503.
10
34
-
50
3
10
34
-
50
3
【考点】四边形综合题.
【答案】10或30或
10
34
-
50
3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/10 6:0:2组卷:390引用:3难度:0.2
相似题
-
1..如图,在梯形ABCD中,AD∥BC,AD=9cm,BC=24cm,E是BC的中点.动点P从点A出发沿AD向终点D运动,动点P平均每秒运动1cm;同时动点Q从点C出发沿CB向终点B运动,动点Q平均每秒运动2cm,当动点P停止运动时,动点Q也随之停止运动.
(1)当动点P运动t(0<t<9)秒时,则PD=;(用含t的代数式直接表示)
(2)当动点Q运动t秒时,
①若0<t<6,则EQ=;(用含t的代数式直接表示)
②若6<t<9,则EQ=;(用含t的代数式直接表示)
(3)当运动时间t为多少秒时,以点P,Q,D,E为顶点的四边形是平行四边形?发布:2025/6/11 21:30:2组卷:43引用:1难度:0.3 -
2.已知,在△ABC中,∠ACB=90°,AC=6,BC=8,点D、E分别在边AB、BC上,且均不与顶点B重合,∠ADE=∠A(如图1所示),设AD=x,BE=y.
(1)当点E与点C重合时(如图2所示),求线段AD的长;
(2)在图1中当点E不与点C重合时,求y关于x的函数解析式;
(3)我们把有一组相邻内角相等的凸四边形叫做等邻角四边形.请阅读理解以上定义,完成问题探究:如图1,设点F在边AB上,CE=3,如果四边形ACEF是等邻角四边形,求线段AF的长.发布:2025/6/11 22:0:1组卷:74引用:2难度:0.4 -
3.如图1,在等腰直角三角形ADC中,∠ADC=90°,AD=4.点E是AD的中点,以DE为边作正方形DEFG,连接AG,CE.将正方形DEFG绕点D顺时针旋转,旋转角为α(0°<α<90°).
(1)如图2,在旋转过程中,
①判断△AGD与△CED是否全等,并说明理由;
②当CE=CD时,AG与EF交于点H,求GH的长.
(2)如图3,延长CE交直线AG于点P.
①求证:AG⊥CP;
②在旋转过程中,线段PC的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由.发布:2025/6/11 20:0:1组卷:2479引用:6难度:0.1