学习整式乘法时,老师拿出三种型号的卡片,如图1:A型卡片是边长为a的正方形,B型卡片是边长为b的正方形,C型卡片是长和宽分别为a,b的长方形.
(1)选取1张A型卡片,2张C型卡片,1张B型卡片,在纸上按照图2的方式拼成一个长为(a+b)的大正方形,通过不同方式表示大正方形的面积,可得到乘法公式:(a+b)2=a2+2ab+b2(a+b)2=a2+2ab+b2.
(2)若用图1中的8块C型长方形卡片可以拼成如图3所示的长方形,它的宽为20cm,请你求出每块长方形的面积.
(3)选取1张A型卡片,3张C型卡片按图4的方式不重叠地放在长方形DEFG框架内,已知GF的长度固定不变,DG的长度可以变化,图中两阴影部分(长方形)的面积分别表示为S1,S2,若S=S2-S1,则当a与b满足a=2ba=2b时,S为定值,且定值为a2-aba2-ab.

【答案】(a+b)2=a2+2ab+b2;a=2b;a2-ab
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/21 0:0:1组卷:531引用:3难度:0.4
相似题
-
1.如图①,是一个长为2m、宽为2n的长方形,用剪刀沿图中的虚线(对称轴)剪开,把它分成四个形状和大小都相同的小长方形,然后按图②那样拼成一个正方形(中间是空的).
(1)图②中画有阴影的小正方形的边长等于多少?
(2)观察图②,写出代数式(m+n)2,(m-n)2与mn之间的等量关系;
(3)根据(2)中的等量关系解决下面的问题:若m+n=7,mn=5,求(m-n)2的值.发布:2025/6/20 18:0:1组卷:2528引用:11难度:0.7 -
2.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.
(1)如图1所示的大正方形,是由两个正方形和两个形状大小完全相同的长方形拼成的.用两种不同的方法计算图中阴影部分的面积,可以得到的数学等式是 ;
(2)如图2所示的大正方形,是由四个三边长分别为a、b、c的全等的直角三角形(a、b为直角边)和一个正方形拼成,试通过两种不同的方法计算中间正方形的面积,并探究a、b、c之间满足怎样的等量关系;
(3)利用(1)(2)的结论,如果直角三角形两直角边满足a+b=17,ab=60,求斜边c的值.发布:2025/6/20 13:0:29组卷:1560引用:7难度:0.5 -
3.有两个正方形A,B,现将B放在A的内部如图甲,将A,B并排放置后构造新的正方形如图乙.若图甲和图乙中阴影部分的面积分别为
和14,则正方形A,B的面积之和为( )134发布:2025/6/20 23:0:1组卷:1907引用:13难度:0.5