试卷征集
加入会员
操作视频

甲、乙、丙三人参加浙江卫视的“我爱记歌词”节目,三人独立闯关,互不影响.其中甲过关而乙不过关的概率是
1
4
,乙过关而丙不过关的概率是
1
12
,甲、丙均过关的概率为
2
9
.记ξ为节目完毕后过关人数和未过关人数之差的绝对值.
(1)求甲、乙、丙三人各自过关的概率;
(2)理科:求ξ的分布列和数学期望;
文科:求ξ取最小值时的概率;
(3)理科:设“函数
f
x
=
lo
g
2
[
ξ
x
2
-
ξ
-
1
x
+
1
4
]
的值域是R”为事件D,试求事件D的概率.
文科:设“不等式x2-ξx+1<0对一切x∈[1,2]均成立”为事件D,试求事件D的概率.

【答案】(1)
1
3
1
4
2
3

(2)理科:
ξ 1 3
P
7
9
2
9
7
9
,文科:
2
9

(3)
2
9
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:39引用:1难度:0.3
相似题
  • 1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
    (Ⅰ)求获得复赛资格的人数;
    (Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
    (Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).

    发布:2024/12/29 13:30:1组卷:134引用:7难度:0.5
  • 2.设离散型随机变量X的分布列如表:
    X 1 2 3 4 5
    P m 0.1 0.2 n 0.3
    若离散型随机变量Y=-3X+1,且E(X)=3,则(  )

    发布:2024/12/29 13:0:1组卷:199引用:6难度:0.5
  • 3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为(  )

    发布:2024/12/29 13:30:1组卷:139引用:6难度:0.7
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正