对于任意一个三位数k,如果k满足各个数位上的数字都不为零,且十位上的数字的平方等于百位上的数字与个位上的数字之积的4倍,那么称这个数为“喜鹊数”.例如:k=169,因为62=4×1×9,所以169是“喜鹊数”.
(1)已知一个“喜鹊数”k=100a+10b+c(1≤a、b、c≤9,其中a,b,c为正整数),请直接写出a,b,c所满足的关系式 b2-4ac=0b2-4ac=0;判断241 不是不是“喜鹊数”(填“是”或“不是”),并写出一个“喜鹊数”121121;
(2)利用(1)中“喜鹊数”k中的a,b,c构造两个一元二次方程ax2+bx+c=0①与cx2+bx+a=0②,若x=m是方程①的一个根,x=n是方程②的一个根,求m与n满足的关系式;
(3)在(2)中条件下,且m+n=-2,请直接写出满足条件的所有k的值.
【答案】b2-4ac=0;不是;121
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/12/23 10:30:1组卷:968引用:6难度:0.5