已知函数y=x2+2mx+m-1(m为常数).
(1)若该函数图象与y轴的交点在x轴上方,求m的取值范围;
(2)求证:不论m取何值,该函数图象与x轴总有两个公共点.
【考点】二次函数图象与系数的关系;抛物线与x轴的交点.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/5/21 19:30:2组卷:884引用:6难度:0.9
相似题
-
1.如图是二次函数y=a(x+1)2+k(a≠0)的图象的一部分,已知图象与x轴交于点(1,0).下列结论错误的是( )
发布:2025/5/22 4:0:7组卷:385引用:1难度:0.5 -
2.已知抛物线y=x2-2mx+m2-9(m为常数)与x轴交于点A,B,点P(m+1,y1),Q(m-3,y2)为抛物线上的两点,则下列说法不正确的是( )
发布:2025/5/22 4:30:1组卷:366引用:1难度:0.5 -
3.二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的部分图象如图所示,图象的顶点坐标为(2,1),与x轴的一个交点在点(3,0)和点(4,0)之间,有下列结论:
①abc<0;
②a-b+c>0;
③c-4a=1;
④b2>4ac;
⑤am2+bm+c≤1(m为任意实数).
其中正确的有( )发布:2025/5/22 4:0:7组卷:495引用:2难度:0.6