定义在R上的函数f(x)对任意a,b∈R都有f(a+b)=f(a)+f(b)+k(k为常数)
(1)判断k为何值时,f(x)为奇函数,并证明;
(2)设k=-1,f(x)是R上的增函数,且f(4)=5,若不等式f(9x-m•3x+m+3)>3对任意x∈(0,+∞)恒成立,求实数m的取值范围.
(3)若cn=12n-(1n-1n+1),n∈N+,Sn为cn的前n项和,求正整数k,使得对任意n∈N*均有f(Sk)≥f(Sn).
c
n
=
1
2
n
-
(
1
n
-
1
n
+
1
)
【考点】抽象函数的周期性.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:143引用:1难度:0.1
相似题
-
1.已知f(x)在R上是奇函数,且f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(7)=( )
发布:2024/12/20 0:0:3组卷:85引用:8难度:0.8 -
2.已知函数f(x),g(x)在R上的导函数分别为f'(x),g'(x),若f(x+2)为偶函数,y=g(x+1)-2是奇函数,且f(3-x)+g(x-1)=2,则下列结论正确的是( )
发布:2024/12/28 23:30:2组卷:129引用:7难度:0.6 -
3.已知函数f(x)对任意x∈R都有f(x+2)+f(x-2)=2f(2),若y=f(x+1)的图象关于点(-1,0)对称,且f(1)=2,则f(2009)=( )
发布:2024/12/29 7:0:1组卷:84引用:2难度:0.5