“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的边长为( )
【考点】勾股定理的证明.
【答案】C
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/13 12:0:1组卷:1196引用:9难度:0.9
相似题
-
1.如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH是正方形,如果AH=6,EF=2,那么AB=.
发布:2025/6/15 2:30:1组卷:103引用:2难度:0.7 -
2.小颖用四块完全一样的长方形方砖,恰好拼成如图1所示图案,如图2,连接对角线后,她发现该图案中可以用“面积法”采用不同方案去证明勾股定理.设AE=a,DE=b,AD=c,请你找到其中一种方案证明:a2+b2=c2.
发布:2025/6/15 2:30:1组卷:617引用:2难度:0.5 -
3.清代数学家梅文鼎在《勾股举隅》一书中,用四个全等的直角三角形拼出正方形ABDE的方法证明了勾股定理(如图),若Rt△ABC的斜边AB=5,BC=3,则图中线段CE的长为.
发布:2025/6/14 21:30:2组卷:1094引用:14难度:0.7