我们把函数图象上横坐标与纵坐标互为相反数的点定义为这个函数图象上的“互反点”.例如在二次函数y=x2的图象上,存在一点P(-1,1),则P为二次函数y=x2图象上的“互反点”.
(1)分别判断y=-x+3、y=x2+x的图象上是否存在“互反点”?如果存在,求出“互反点”的坐标;如果不存在,说明理由;
(2)如图①,设函数y=-5x(x<0),y=x+b的图象上的“互反点”分别为点A,B,过点B作BC⊥x轴,垂足为C.当△ABC的面积为5时,求b的值;
(3)如图②,Q(m,0)为x轴上的动点,过Q作直线l⊥x轴,若函数y=-x2+2(x≥m)的图象记为W1,将W1沿直线l翻折后的图象记为W2.当W1,W2两部分组成的图象上恰有2个“互反点”时,直接写出m的取值范围.

y
=
-
5
x
(
x
<
0
)
【考点】二次函数综合题.
【答案】(1)y=-x+3的图象上不存在“互反点”;(0,0),(-2,2)是y=x2+x的图象上的“互反点”;
(2)b=4或b=-2;
(3)-1<m<2或m<-时,W1,W2两部分组成的图象上恰有2个“互反点”.
(2)b=4
5
5
(3)-1<m<2或m<-
9
8
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/28 8:51:19组卷:371引用:1难度:0.3
相似题
-
1.综合与探究
如图,抛物线y=-x2+bx+c与x轴交于A,B两点,与y轴交于点C,点B,C的坐标分别为(2,0),(0,3),点D与点C关于x轴对称,P是直线AC上方抛物线上一动点,连接PD、交AC于点Q.12
(1)求抛物线的函数表达式及点A的坐标;
(2)在点P运动的过程中,求PQ:DQ的最大值;
(3)在y轴上是否存在点M,使∠AMB=45°?若存在,请直接写出点M的坐标;若不存在,请说明理由.发布:2025/5/25 14:0:1组卷:951引用:4难度:0.1 -
2.已知抛物线y=x2-2x-3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l与抛物线交于A,D两点,点D的坐标为(4,5),与y轴交于点E.
(1)求A,B两点的坐标及直线l的解析式;
(2)若点P在直线l下方抛物线上,过点P作PM⊥x轴于点M,直线PM与直线l交于点N,当点M是PN的三等分点时,求点P的坐标;
(3)若点H是抛物线y=x2-2x-3对称轴上的一点,且∠AHD=45°,请直接写出点H的坐标.发布:2025/5/25 14:0:1组卷:103引用:2难度:0.2 -
3.在平面直角坐标系中,直线y=-x-2与x轴相交于点A,与y轴相交于点B,二次函数y=ax2-2x-c的图象过A,B两点.
(1)求二次函数的表达式;
(2)点C是抛物线对称轴l上一点,点D在抛物线上,若以点C、D、A为顶点的三角形与△AOB全等,求满足条件的点D、点C的坐标.发布:2025/5/25 14:0:1组卷:109引用:1难度:0.2