已知圆A1:(x+1)2+y2=16,直线l1过点A2(1,0)且与圆A1交于点B,C,BC中点为D,A2C中点E且平行于A1D的直线交A1C于点P,记P的轨迹为Γ.
(1)求Γ的方程;
(2)坐标原点O关于A1,A2的对称点分别为B1,B2,点A1,A2关于直线y=x的对称点分别为C1,C2,过A1的直线l2与Γ交于点M,N,直线B1M,B2N相交于点Q.请从下列结论中,选择一个正确的结论并给予证明.
①△QBC的面积是定值;②△BB1B2的面积是定值:③△QC1C2的面积是定值.
【考点】直线与圆锥曲线的综合;轨迹方程.
【答案】(1);(2)结论③正确,证明见解析.
Γ
:
x
2
4
+
y
2
3
=
1
(
x
≠±
2
)
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/24 14:0:35组卷:74引用:1难度:0.4
相似题
-
1.已知两个定点坐标分别是F1(-3,0),F2(3,0),曲线C上一点任意一点到两定点的距离之差的绝对值等于2
.5
(1)求曲线C的方程;
(2)过F1(-3,0)引一条倾斜角为45°的直线与曲线C相交于A、B两点,求△ABF2的面积.发布:2024/12/29 10:30:1组卷:104引用:1难度:0.9 -
2.点P在以F1,F2为焦点的双曲线
(a>0,b>0)上,已知PF1⊥PF2,|PF1|=2|PF2|,O为坐标原点.E:x2a2-y2b2=1
(Ⅰ)求双曲线的离心率e;
(Ⅱ)过点P作直线分别与双曲线渐近线相交于P1,P2两点,且,OP1•OP2=-274,求双曲线E的方程;2PP1+PP2=0
(Ⅲ)若过点Q(m,0)(m为非零常数)的直线l与(2)中双曲线E相交于不同于双曲线顶点的两点M、N,且(λ为非零常数),问在x轴上是否存在定点G,使MQ=λQN?若存在,求出所有这种定点G的坐标;若不存在,请说明理由.F1F2⊥(GM-λGN)发布:2024/12/29 10:0:1组卷:72引用:5难度:0.7 -
3.若过点(0,-1)的直线l与抛物线y2=2x有且只有一个交点,则这样的直线有( )条.
发布:2024/12/29 10:30:1组卷:26引用:5难度:0.7
相关试卷