△ABC中,D、E分别是△ABC两边AB、AC的中点,若经过D、E的⊙M与△ABC有n个公共点(相切算一个公共点),则称⊙M为△ABC关于D、E的“中n点圆”.例如,图1中的圆是△ABC关于D、E的“中4点圆”.
(1)①如图1,则△ABC的“中n点圆”中n可以取的值为 2或3或4或5或62或3或4或5或6(写所有可能的值);
②在所给图1中画出一个“中3点圆”;
(2)如图2,在平面直角坐标系xOy中,已知点A(a,6),点B(0,0),C(4,0),⊙M为△ABC的“中n点圆”.
①当a=0,n=4时,求圆心M纵坐标的取值范围.
②若n=3时,圆心M总在△ABC外,直接写出a的取值范围.

【考点】圆的综合题.
【答案】2或3或4或5或6
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:132引用:1难度:0.3
相似题
-
1.如图,AB是圆O的直径,AB=6,D是半圆ADB上的一点,C是弧BD的中点.
(1)若∠ABD=30°,求BC的长和由弦BC、BD、和弧CD围成的图形面积;
(2)若弧AD的度数是120度,在半径OB上是否存在点P,使得PC+PD的值最小,如果存在,请在备用图中画出P的位置,并求PC+PD的最小值,如果不存在,请说明理由.发布:2025/1/28 8:0:2组卷:44引用:0难度:0.3 -
2.如图,AB是圆O的直径,弦CD与AB交于点H,∠BDC=∠CBE.
(1)求证:BE是圆O的切线;
(2)若CD⊥AB,AC=2,BH=3,求劣弧BC的长;
(3)如图,若CD∥BE,作DF∥BC,满足BC=2DF,连接FH、BF,求证:FH=BF.发布:2025/1/28 8:0:2组卷:100引用:1难度:0.1 -
3.如图,AB是圆O的直径,弦CD⊥AB于G,射线DO与直线CE相交于点E,直线DB与CE交于点H,且∠BDC=∠BCH.
(1)求证:直线CE是圆O的切线.
(2)如图1,若OG=BG,BH=1,直接写出圆O的半径;
(3)如图2,在(2)的条件下,将射线DO绕D点逆时针旋转,得射线DM,DM与AB交于点M,与圆O及切线CF分别相交于点N,F,当GM=GD时,求切线CF的长.发布:2025/1/28 8:0:2组卷:782引用:2难度:0.1