【模型建立】
(1)如图1,等腰Rt△ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过点A作AD⊥ED于点D,过点B作BE⊥ED于点E,求证:△BEC≌△CDA.
【模型应用】
(2)如图2,已知直线l1:y=32x+3与x轴交于点A,与y轴交于点B,将直线l1绕点A逆时针旋转45°至直线l2,则直线l2的函数表达式为 y=-5x-10y=-5x-10.
(3)如图3,将图1四边形放到平面直角坐标系中,点E与O重合,边ED放到x轴上,若OB=2,OC=1,在x轴上存在点M使得以O、A、B、M为顶点的四边形面积为4,请直接写出点M的坐标 (2,0)或(-1,0)(2,0)或(-1,0).
(4)如图4,平面直角坐标系内有一点B(3,-4),过点B作BA⊥x轴于点A,BC⊥y轴于点C,点P是线段AB上的动点,点D是直线y=-2x+1上的动点且在第四象限内.若△CPD是等腰直角三角形.请直接写出点D的坐标 (113,-193)或(4,-7)或(83,-133)(113,-193)或(4,-7)或(83,-133).


3
2
11
3
,-
19
3
8
3
,-
13
3
11
3
,-
19
3
8
3
,-
13
3
【考点】一次函数综合题.
【答案】y=-5x-10;(2,0)或(-1,0);()或(4,-7)或()
11
3
,-
19
3
8
3
,-
13
3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:2508引用:4难度:0.1
相似题
-
1.如图,点P(a,a+2)是直角坐标系xOy中的一个动点,直线l1:y=2x+5与x轴,y轴分别交于点A,B,直线l2经过点B和点(6,2)并与x轴交于点C.
(1)求直线l2的表达式及点C的坐标;
(2)点P会落在直线l1:y=2x+5上吗?说明原因;
(3)当点P在△ABC的内部时.
①求a的范围;
②是否存在点P,使得∠OPA=90°?若存在,直接写出点P的坐标;若不存在,请说明理由.发布:2025/5/25 5:30:2组卷:374引用:2难度:0.4 -
2.如图1,在平面直角坐标系中,点O是坐标原点,直线y=-
x+12与y轴交于点A,与x轴交于B点,点C的坐标为(6,0).34
(1)求直线AC的解析式;
(2)点P为线段OC上一点,过点P作PD⊥OB,交AC于E,交AB于D,设点P横坐标为t,DE的长为d,求d与t的函数关系(不要求写出自变量t的取值范围);
(3)在(2)的条件下,H为x轴负半轴上的一点,连接AH,EF⊥AH于点F,交y轴于点G,连接OF,若∠OFE=2∠OAC,d=,求点G的坐标.154发布:2025/5/25 2:30:1组卷:359引用:2难度:0.1 -
3.如图:一次函数y=-
x+3的图象与坐标轴交于A、B两点,点P是函数y=-34x+3(0<x<4)图象上任意一点,过点P作PM⊥y轴于点M,连接OP.34
(1)当AP为何值时,△OPM的面积最大?并求出最大值;
(2)当△BOP为等腰三角形时,试确定点P的坐标.发布:2025/5/25 1:0:1组卷:2719引用:3难度:0.3