如图,抛物线y=ax2-3ax-10a(a<0)交x轴于A、B两点,交y轴于点C,tan∠CAO=52.
(1)求抛物线的解析式;
(2)直线x=t(0<t<5)与抛物线交于点P,连接PA交y轴于点D,连接AC,当△ACP的面积为4时,求P点的坐标;
(3)点P在第一象限的抛物线上,点F是线段BC上一动点,当∠FOB+∠ADO=90°,FC平分∠OFP时,直接写出△ACP的面积为 1212.

5
2
【考点】二次函数综合题.
【答案】12
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:365引用:1难度:0.1
相似题
-
1.如图,对称轴为直线x=1的抛物线y=x2-bx+c与x轴交于A、B两点,与y轴交于C点,且OB=OC.
(1)求抛物线的解析式;
(2)抛物线顶点为D,直线BD交y轴于E点;
①设点P为线段BD上一点(点P不与B、D两点重合),过点P作x轴的垂线与抛物线交于点F,求△BDF面积的最大值;
②在线段BD上是否存在点Q,使得∠BDC=∠QCE?若存在,求出点Q的坐标;若不存在,请说明理由.发布:2025/5/24 9:30:2组卷:191引用:2难度:0.1 -
2.如图,二次函数
与x轴交于O(0,0),A(4,0)两点,顶点为C,连接OC、AC,若点B是线段OA上一动点,连接BC,将△ABC沿BC折叠后,点A落在点A'的位置,线段A'C与x轴交于点D,且点D与O、A点不重合.y=12x2+bx+c
(1)求二次函数的表达式;
(2)①求证:△OCD∽△A'BD;
②求的最小值.DBBA发布:2025/5/24 9:30:2组卷:300引用:2难度:0.1 -
3.在平面直角坐标系中,O为坐标原点,抛物线y=ax2+2ax+c与x轴交于点A,B,与y轴交于点C,点A的坐标为(2,0),点
在抛物线上.D(-3,52)
(1)求抛物线的表达式;
(2)如图①,点P在y轴上,且点P在点C的下方,若∠PDC=45°,求点P的坐标;
(3)如图②,E为线段CD上的动点,射线OE与线段AD交于点M,与抛物线交于点N,求的最大值.MNOM发布:2025/5/24 9:30:2组卷:1691引用:11难度:0.1