如图,在Rt△ABC中,∠ACB=90°,E为AC上一点,且AE=BC,过点A作AD⊥CA,垂足为A,且AD=AC,AB、DE交于点F
(1)判断线段AB与DE的数量关系和位置关系,并说明理由
(2)连接BD、BE,若设BC=a,AC=b,AB=c,请利用四边形ADBE的面积证明勾股定理.
【考点】全等三角形的判定与性质;勾股定理的证明.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:449引用:11难度:0.3
相似题
-
1.已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,试问:DE和DF相等吗?说明理由.
发布:2025/6/17 15:30:1组卷:919引用:22难度:0.5 -
2.如图,∠B=∠E=90°,AC=DF,BF=EC,则除条件以外,相等的线段还有 .
发布:2025/6/17 15:30:1组卷:67引用:2难度:0.5 -
3.如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,∠EAF=
∠BAD,若DF=1,BE=5,则线段EF的长为( )12发布:2025/6/17 16:30:1组卷:1078引用:5难度:0.5