(1)如图①,在正方形ABCD中,E,F分别是AB,BC边上的动点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM,可以证明△DEF≌△DMF,进一步推出EF,AE,FC之间的数量关系为 EF=AE+FCEF=AE+FC;
(2)在图①中,连接AC分别交DE和DF于P,Q两点,求证:△DPQ∽△DFE;
(3)如图②,在菱形ABCD中,∠ABC=60°,点E,F分别是边BC,CD上的动点(不与端点重合),且∠EAF=60°,连接BD分别与边AE,AF交于M,N.当∠DAF=15°时,猜想MN,DN,BM之间存在什么样的数量关系,并证明你的结论.

【考点】相似形综合题.
【答案】EF=AE+FC
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/5/24 8:0:1组卷:714引用:2难度:0.1
相似题
-
1.【感知】
小明同学复习“相似三角形”的时候遇到了这样的一道题目:如图,在△ABC中,AB=AC,D为BC上一点,过点D作∠ADE=∠B,交AC于点E.求证:△ABD∽△DCE.
【探究】
在△ABC中,AB=AC=10,BC=16,D为BC上一点.
(1)如图②,过点D作∠ADE=∠B,交AC于点E.当DE∥AB时,AD的长为 .
(2)如图③,过点D作∠FDE=∠B,分别交AB、AC于点F、E.当CD=4时,BF的长的取值范围为 .发布:2025/6/14 15:30:1组卷:349引用:5难度:0.3 -
2.如图,在△ABC中,∠C=90°,AC=8cm,动点P从点C出发沿着C-B-A的方向以2cm/s的速度向终点A运动,另一动点Q同时从点A出发沿着AC方向以1cm/s的速度向终点C运动,P、Q两点同时到达各自的终点,设运动时间为t(s).△APQ的面积为S cm2.
(1)求BC的长;
(2)求S与t的函数关系式,并写出t的取值范围;
(3)当t为多少秒时,以P、C、Q为顶点的三角形和△ABC相似?发布:2025/6/14 19:0:1组卷:227引用:5难度:0.4 -
3.在四边形ABCD中,∠EAF=
∠BAD(E、F分别为边BC、CD上的动点),AF的延长线交BC延长线于点M,AE的延长线交DC延长线于点N.12
(1)如图①,若四边形ABCD是正方形,求证:△ACN∽△MCA;
(2)如图②,若四边形ABCD是菱形.
①(1)中的结论是否依然成立?请说明理由;
②若AB=8,AC=4,连接MN,当MN=MA时,求CE的长.发布:2025/6/14 19:0:1组卷:1406引用:3难度:0.1