阅读下列材料,解答后面的问题:
在二次根式的学习中,我们不仅要关注二次根式本身的性质、运算,还要用到与分式、不等式相结合的一些运算.如:
①要使二次根式a-2有意义,则需a-2≥0,解得:a≥2;
②化简:1+1n2+1(n+1)2,则需计算1+1n2+1(n+1)2,而1+1n2+1(n+1)2=n2(n+1)2+(n+1)2+n2n2(n+1)2=n2(n+1)2+n2+2n+1+n2n2(n+1)2=n2(n+1)2+2n2+2n+1n2(n+1)2=n2(n+1)2+2n(n+1)+1n2(n+1)2=[n(n+1)+1]2n2(n+1)2所以1+1n2+1(n+1)2=[n(n+1)+1]2n2(n+1)2=n(n+1)+1n(n+1)=1+1n(n+1)=1+1n-1n+1.
(1)根据二次根式的性质,要使a+23-a=a+23-a成立,求a的取值范围;
(2)利用①中的提示,请解答:如果b=a-2+2-a+1,求a+b的值;
(3)利用②中的结论,计算:1+112+122+1+122+132+1+132+142+⋯+1+120222+120232.
a
-
2
1
+
1
n
2
+
1
(
n
+
1
)
2
1
+
1
n
2
+
1
(
n
+
1
)
2
1
+
1
n
2
+
1
(
n
+
1
)
2
=
n
2
(
n
+
1
)
2
+
(
n
+
1
)
2
+
n
2
n
2
(
n
+
1
)
2
n
2
(
n
+
1
)
2
+
n
2
+
2
n
+
1
+
n
2
n
2
(
n
+
1
)
2
=
n
2
(
n
+
1
)
2
+
2
n
2
+
2
n
+
1
n
2
(
n
+
1
)
2
=
n
2
(
n
+
1
)
2
+
2
n
(
n
+
1
)
+
1
n
2
(
n
+
1
)
2
=
[
n
(
n
+
1
)
+
1
]
2
n
2
(
n
+
1
)
2
1
+
1
n
2
+
1
(
n
+
1
)
2
=
[
n
(
n
+
1
)
+
1
]
2
n
2
(
n
+
1
)
2
=
n
(
n
+
1
)
+
1
n
(
n
+
1
)
=
1
+
1
n
(
n
+
1
)
=
1
+
1
n
-
1
n
+
1
a
+
2
3
-
a
=
a
+
2
3
-
a
b
=
a
-
2
+
2
-
a
+
1
1
+
1
1
2
+
1
2
2
+
1
+
1
2
2
+
1
3
2
+
1
+
1
3
2
+
1
4
2
+
⋯
+
1
+
1
2022
2
+
1
2023
2
【答案】(1)-2≤a<3;
(2)3;
(3)2022.
(2)3;
(3)2022
2022
2023
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/5 8:0:9组卷:158引用:1难度:0.6