如图1,在平面直角坐标系中,经过点A(4,0)的直线AB与y轴交于点B(0,4).经过原点O的抛物线y=-x2+bx+c交直线AB于点A,C,抛物线的顶点为D,对称轴与x轴交于点H.

(1)求抛物线y=-x2+bx+c的表达式;
(2)M是线段AB上一点,过点M作MN⊥OA,交抛物线于点N,若M点的横坐标为m,线段MN的长为d,求d与m之间的函数关系式;
(3)如图2,连接AD,当点P是对称轴左侧抛物线上一动点时,过点P作PE⊥AB于E,连接DP,若∠DPE=∠ADH,求点P的坐标.
【考点】二次函数综合题.
【答案】(1)y=-x2+4x;
(2)d=m2-5m+4或-m2+5m-4;
(3)(-1,-5).
(2)d=m2-5m+4或-m2+5m-4;
(3)(-1,-5).
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:186引用:2难度:0.1
相似题
-
1.如图1,抛物线y=ax2+bx+4与x轴交于A,B两点,与y轴交于点C,AB=8,B点横坐标为2,延长矩形OBDC的DC边交抛物线于E.
(1)求抛物线的解析式;
(2)如图2,若点P是直线EO上方的抛物线上的一个动点,过点P作x轴的垂线交直线EO于点M,求PM的最大值;
(3)如图3,如果点F是抛物线对称轴l上一点,抛物线上是否存在点G,使得以F,G,A,C为顶点的四边形是平行四边形?若存在,求出所有满足条件的点G的坐标;若不存在,请说明理由.发布:2025/6/7 7:0:1组卷:565引用:8难度:0.1 -
2.如图,在平面直角坐标系中,矩形ABCD的边BC与x轴、y轴的交点分别为C(8,0),B(0,6),CD=5,抛物线y=ax2-
x+c(a≠0)过B,C两点,动点M从点D开始以每秒5个单位长度的速度沿D→A→B→C的方向运动到达C点后停止运动.动点N从点O以每秒4个单位长度的速度沿OC方向运动,到达C点后,立即返回,向CO方向运动,到达O点后,又立即返回,依此在线段OC上反复运动,当点M停止运动时,点N也停止运动,设运动时间为t.154
(1)求抛物线的解析式;
(2)求点D的坐标;
(3)当点M,N同时开始运动时,若以点M,D,C为顶点的三角形与以点B,O,N为顶点的三角形相似,直接写出t的值.发布:2025/6/7 16:30:2组卷:39引用:2难度:0.1 -
3.如图,抛物线y=ax2+bx与x轴交于点A(-2,0),与反比例函数y=
图象交于点B,过点B作BQ⊥y轴于点Q,BQ=1.3x
(1)求抛物线的表达式;
(2)若点P是抛物线对称轴上一点,当BP+OP的值最小时,求线段QP的长;
(3)若点M是平面直角坐标系内任意一点,在抛物线的对称轴上是否存在一点D,使得以A,B,D,M为顶点的四边形是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由.发布:2025/6/7 17:30:1组卷:37引用:1难度:0.4