试卷征集
加入会员
操作视频

定义:如图1,A,B为直线l同侧的两点,作点A关于直线l对称的点A′,连接AA′,连接A′B交直线l于点P,连接AP,则称点P为点A,B关于直线l的“等角点”.
(1)由“等角点”的定义可知:如图1,点A和点A′关于直线l对称,
∴∠APC=∠A′PC.
∵∠A′PC=∠BPD,∴∠
APC
APC
=∠
BPD
BPD

可得若满足∠
APC
APC
=∠
BPD
BPD
,则点P为点A,B关于直线l的“等角点”.
(2)如图2,在△ABC中,D,E分别是AB,AC上的点,AB=AC,AD=AE,然后将△ADE绕点A顺时针旋转一定角度,连接BD,CE,得到图3,试写出BD与CE的数量关系,并说明理由.
(3)在(2)的条件下,延长CE交BA的延长线于点N,延长BD至点M,使DM=EN,连接AM,得到图4,求证:点A为点C,M关于直线BN的“等角点”.

【考点】几何变换综合题
【答案】APC;BPD;APC;BPD
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/11 13:30:8组卷:64引用:3难度:0.1
相似题
  • 1.已知,点D是等边△ABC边AB所在直线AB上一动点(点D与点A、B不重合),连接DC,以DC为边在DC上方作等边△DCE,连接AE;
    操作发现:
    (1)如图(1),当动点D在AB上,你能发现线段AE与BD之间的数量关系吗?并证明你发现的结论;
    (2)如图(2),在(1)的条件下,作△DCE关于直线CD对称的△DCF,连接BF,探究AE、BF与BC有何数量关系?并证明你探究的结论;
    拓展探究:
    (3)如图(3),当动点D在BA的延长线上,其他作法与(2)相同,当AE=5,BF=2时,求BC的长度.

    发布:2025/6/14 15:30:1组卷:134引用:2难度:0.2
  • 2.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,动点P从点A出发,沿AC以每秒5个单位长度的速度向终点C运动,过点P作PQ⊥AB于点Q,将线段PQ绕点P逆时针旋转90°得到线段PR,连结QR.设点P的运动时间为t秒(t>0).
    (1)线段AP的长为
    (用含t的代数式表示).
    (2)当点P与点C重合时,求t的值.
    (3)当C、R、Q三点共线时,求t的值.
    (4)当△CPR为钝角三角形时,直接写出t的取值范围.

    发布:2025/6/14 12:0:1组卷:230引用:5难度:0.9
  • 3.如图,在△ABC与△ADE中,∠BAC=∠DAE=90°,AB=AC=4,AD=AE=2.连接CD,BE,F,G,H分别是BE,CD,DE的中点,连接GF,FH,GH.
    (1)如图1,当B,A,E三点共线,且D在AC边上时,求线段FH,GH的长;
    (2)如图2,当△ADE绕点A旋转时,求证:△GFH是等腰直角三角形,并直接写出△GFH面积的最大值.

    发布:2025/6/14 15:0:1组卷:139引用:2难度:0.3
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正