若函数y=f(x)在x=x0处取得极值,且f(x0)=λx0(常数λ∈R),则称x0是函数y=f(x)的“λ相关点”.
(1)若函数y=x2+2x+2存在“λ相关点”,求λ的值;
(2)若函数y=kx2-2lnx(常数k∈R)存在“1相关点”,求k的值:
(3)设函数y=f(x)的表达式为f(x)=ax3+bx2+cx(常数a、b、c∈R且a≠0),若函数y=f(x)有两个不相等且均不为零的“2相关点”,过点P(1,2)存在3条直线与曲线y=f(x)相切,求实数a的取值范围.
【答案】(1)λ=-1.
(2)1.
(3)(-∞,-1).
(2)1.
(3)(-∞,-1).
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:270引用:6难度:0.6
相似题
-
1.已知函数f(x)=(x-a)lnx(a∈R),它的导函数为f'(x).
(1)当a=1时,求f'(x)的零点;
(2)若函数f(x)存在极小值点,求a的取值范围.发布:2024/12/29 13:0:1组卷:279引用:8难度:0.4 -
2.若函数
有两个极值点,则实数a的取值范围为( )f(x)=e2x4-axex发布:2024/12/29 13:30:1组卷:125引用:4难度:0.5 -
3.定义:设f'(x)是f(x)的导函数,f″(x)是函数f'(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.经过探究发现:任何一个三次函数都有“拐点”且“拐点”就是三次函数图像的对称中心,已知函数
的对称中心为(1,1),则下列说法中正确的有( )f(x)=ax3+bx2+53(ab≠0)发布:2024/12/29 13:30:1组卷:184引用:7难度:0.5
相关试卷