已知点O是线段AB的中点,点P是直线l上的任意一点,分别过点A和点B作直线l的垂线,垂足分别为点C和点D.我们定义垂足与中点之间的距离为“足中距”.

(1)[探究证明]如图1,当点P是线段AB上的任意一点时,“足中距”OC和OD存在怎样的数量关系,并给出证明过程.
(2)[拓展延伸]如图2,当点P是线段BA延长线上的任意一点时,若∠COD=60°,AC=2,BD=3,求CP的长.
【考点】全等三角形的判定与性质.
【答案】(1)OC=OD;
(2).
(2)
CP
=
10
3
3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/8/5 8:0:8组卷:21引用:2难度:0.5
相似题
-
1.如图,在△ABC中,∠BAC=90°,延长BA到点D,使AD=
AB,点E、F分别为BC、AC的中点,请你在图中找出一组相等关系,使其满足上述所有条件,并加以证明.12发布:2025/1/24 8:0:2组卷:4引用:1难度:0.5 -
2.如图,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在线段BC上,且AE=CF.
求证:∠AEB=∠CFB.发布:2025/1/24 8:0:2组卷:454引用:4难度:0.7 -
3.如图,在Rt△ABC中,∠C=∠BED=90°,且CD=DE,AD=BD,则∠B=.
发布:2025/1/28 8:0:2组卷:10引用:0难度:0.7