已知函数f(x)=2sin(ωx+π6)(x∈R,ω>0)的部分图象如图所示.
(1)求函数f(x)的单调递增区间;
(2)求函数f(x)在[0,π3]上的最值.
f
(
x
)
=
2
sin
(
ωx
+
π
6
)
(
x
∈
R
,
ω
>
0
)
[
0
,
π
3
]
【答案】(1);
(2)最小值是1,最大值是2.
[
kπ
-
π
3
,
kπ
+
π
6
]
(
k
∈
Z
)
(2)最小值是1,最大值是2.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:244引用:3难度:0.5