已知f(x)=ax+lnx,x∈(0,e],g(x)=lnxx,其中e是无理数,a∈R.
(1)若a=1时,f(x)的单调区间、极值;
(2)求证:在(1)的条件下,f(x)>g(x)+12;
(3)是否存在实数a,使f(x)的最小值是-1,若存在,求出a的值;若不存在,说明理由.
f
(
x
)
=
a
x
+
lnx
,
x
∈
(
0
,
e
]
,
g
(
x
)
=
lnx
x
f
(
x
)
>
g
(
x
)
+
1
2
【考点】利用导数研究函数的最值.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:121引用:21难度:0.1
相似题
-
1.已知函数
,若关于x的不等式f(x)=ln2+x2-x+1对任意x∈(0,2)恒成立,则实数k的取值范围( )f(kex)+f(-12x)>2发布:2025/1/5 18:30:5组卷:296引用:2难度:0.4 -
2.已知函数f(x)=
.ex-ax21+x
(1)若a=0,讨论f(x)的单调性.
(2)若f(x)有三个极值点x1,x2,x3.
①求a的取值范围;
②求证:x1+x2+x3>-2.发布:2024/12/29 13:0:1组卷:187引用:2难度:0.1 -
3.已知函数f(x)=ax3+x2+bx(a,b∈R)的图象在x=-1处的切线斜率为-1,且x=-2时,y=f(x)有极值.
(1)求f(x)的解析式;
(2)求f(x)在[-3,2]上的最大值和最小值.发布:2024/12/29 12:30:1组卷:47引用:4难度:0.5