如图1,在平行四边形ABCD中,AD∥BC,E是CD的中点,AE⊥AB,AE,BC的延长线交于点F,在线段BF上取点M,N(点M在B,N之间),使得BM=FN=18MN.当点P从M匀速运动到点N处时,点Q恰好从点F匀速运动到点A处.连结AP.设MP=x,AQ=y,已知y=-x+8.

(1)求BF,AF的长.
(2)当PQ⊥BC时(如图2),求△FPQ的周长.
(3)若AB=6,①当△APQ是以AP为腰的等腰三角形时,求x的值.
②将PQ绕点Q顺时针旋转90°得线段P′Q,若点P′落在四边形ABCD的内部,请直接写出x的取值范围.
1
8
【考点】四边形综合题.
【答案】(1)BF=10;AF=8;
(2)12;
(3)①x=或;
②<x<.
(2)12;
(3)①x=
19
6
32
13
②
7
2
13
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:198引用:1难度:0.4
相似题
-
1.如图,点E,F分别在正方形ABCD的边CD,BC上,且DE=CF,点P在射线BC上(点P不与点F重合).将线段EP绕点E顺时针旋转90°得到线段EG,过点E作GD的垂线QH,垂足为点H,交射线BC于点Q.
(1)如图1,若点E是CD的中点,点P在线段BF上,
①PQ=;
②线段BP,QC,EC的数量关系为 .
(2)如图2,若点E不是CD的中点,点P在线段BF上,判断(1)中的结论是否仍然成立,若成立,请写出证明过程;若不成立,请说明理由.
(3)正方形ABCD的边长为9,DE=DC,QC=2,请直接写出线段BP的长.13发布:2025/5/25 3:30:2组卷:544引用:4难度:0.4 -
2.背景阅读:
早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载与我国古代著名数学著作《周髀算经》中,为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形,例如:三边长分别为9,12,15或的三角形就是(3,4,5)型三角形,用矩形纸片按下面的操作方法可以折出这种类型的三角形.32,42,52
实践操作:
如图1,在矩形纸片ABCD中,AD=8cm,AB=12cm.
第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.
第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.
第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF交于点N,然后展平.
问题解决:
(1)请在图4中判断NF与ND′的数量关系,并加以证明;
(2)请在图4中证明△AEN(3,4,5)型三角形;
探索发现:
(3)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.发布:2025/5/25 2:0:6组卷:183引用:4难度:0.1 -
3.在数学兴趣小组活动中,小亮进行数学探究活动.
(1)△ABC是边长为3的等边三角形,E是边AC上的一点,且AE=1,小亮以BE为边作等边三角形BEF,如图1.求CF的长;
(2)△ABC是边长为3的等边三角形,E是边AC上的一个动点,小亮以BE为边作等边三角形BEF,如图2.在点E从点C到点A的运动过程中,求点F所经过的路径长;
(3)△ABC是边长为3的等边三角形,M是高CD上的一个动点,小亮以BM为边作等边三角形BMN,如图3.在点M从点C到点D的运动过程中,求点N所经过的路径长;
(4)正方形ABCD的边长为3,E是边CB上的一个动点,在点E从点C到点B的运动过程中,小亮以B为顶点作正方形BFGH,其中点F、G都在直线AE上,如图4.当点E到达点B时,点F、G、H与点B重合.则点H所经过的路径长为,点G所经过的路径长为.发布:2025/5/25 2:30:1组卷:3595引用:2难度:0.2