(1)如图1,在△ABC中,∠ACB=90°,AE是角平分线,CD是高,AE、CD相交于点F,∠CFE与∠CEF的数量关系为 ∠CEF=∠CFE∠CEF=∠CFE.
(2)如图2,在△ABC中,∠ACB=90°,CD是AB边上的高,若△ABC的外角∠BAG的平分线交CD的延长线于点F,其反向延长线与BC边的延长线交于点E.探究∠CFE与∠CEF的数量关系并说明理由;
(3)如图3,在△ABC中,边AB上存在一点D,使得∠ACD=∠B,∠BAC的平分线AE交CD于点F,交BC于E.△ABC的外角∠BAG的平分线所在直线MN与BC的延长线交于点M.请补全图形并直接写出∠M与∠CFE的数量关系.

【答案】∠CEF=∠CFE
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:1064引用:1难度:0.3
相似题
-
1.如图,在△ABC中,CD是AB边上的高,BE是AC边上的高,点O是两条高线的交点,则∠A与∠1+∠2的关系是( )
发布:2025/1/24 8:0:2组卷:910引用:3难度:0.9 -
2.如图,在△ACB中,∠ACB=90°,CD⊥AB于D.
(1)求证:∠ACD=∠B;
(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.发布:2024/12/23 17:30:9组卷:12893引用:35难度:0.5 -
3.如图,在Rt△ABC中,∠ACB=90°,∠A=48°,将其折叠,E是点A落在边BC上的点,折痕为CD,则∠EDB的度数为.
发布:2024/12/23 9:30:1组卷:1515引用:5难度:0.6