某草莓基地种植的草莓,按1个草莓果重量Z(克)分为4级:使Z≥20的为LL级,使15≤Z<20的为L级,使10≤Z<15的为M级,使5≤Z<10的为S级,使Z<5的为废果.将LL级果与L级果称为优品果.已知这个基地种植的草莓果重量Z服从正态分布N(10,25).
(1)从该草莓基地随机抽取1个草莓果,求抽出优品果的概率(精确到0.1);
(2)对该草莓基地的草莓进行随机抽查,每次抽出1个草莓果,如果抽出优品果,则抽查终止,否则继续抽查,直到抽出优品果,但抽查次数最多不超过n次,若抽查次数X的期望值不超过4,根据第(1)问的结果,求n的最大值.
附:若随机变量Z服从正态分布N(μ,σ),则P(μ-σ<Z≤μ+σ)≈0.6827;P(μ-2σ<Z≤μ+2σ)≈0.9545;P(μ-3σ<Z≤μ+3σ)≈0.9773.参考数据:0.85≈0.3277,0.86≈0.2621,0.87≈0.2097,0.88≈0.1678,0.89≈0.1342,
【答案】(1)0.2.(2)7.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:230引用:1难度:0.2
相似题
-
1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
(Ⅰ)求获得复赛资格的人数;
(Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
(Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).发布:2024/12/29 13:30:1组卷:134引用:7难度:0.5 -
2.设离散型随机变量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 发布:2024/12/29 13:0:1组卷:200引用:6难度:0.5 -
3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为( )
发布:2024/12/29 13:30:1组卷:139引用:6难度:0.7