试卷征集
加入会员
操作视频

如图,在△ABC中,AC=3,AB=4,BC=5,P为BC边上一动点,PG⊥AC于点G,PH⊥AB于点H.
(1)求证:四边形AGPH是矩形;
(2)在点P的运动过程中,GH的长是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.
(3)如图2,建立平面直角坐标系,BC和x轴重合,点C和坐标原点重合,以A、B、C、D为顶点的四边形为平行四边形,直接写出所有满足条件的点D的坐标.

【考点】四边形综合题
【答案】(1)证明见解答过程;
(2)在点P的运动过程中,GH的长存在最小值,GH的最小值为
12
5

(3)D的坐标为(
16
5
,-
12
5
)或(-
16
5
12
5
)或(
34
5
12
5
).
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/6 22:30:1组卷:75引用:2难度:0.2
相似题
  • 1.如图,正方形ABCD的边长为4,点E在AB边上,BE=1,F为BC边的中点.将正方形截去一个角后得到一个五边形AEFCD,点P在线段EF上运动(点P可与点E,点F重合),作矩形PMDN,其中M,N两点分别在CD,AD边上.
    设CM=x,矩形PMDN的面积为S.
    (1)DM=
    (用含x的式子表示),x的取值范围是

    (2)求S与x的函数关系式;
    (3)要使矩形PMDN的面积最大,点P应在何处?并求最大面积.

    发布:2025/6/20 10:0:1组卷:399引用:4难度:0.2
  • 2.如图1,正方形ABCD,E为平面内一点,且∠BEC=90°,把△BCE绕点B逆时针旋转90°得△BAG,直线AG和直线CE交于点F.
    (1)证明:四边形BEFG是正方形;
    (2)若∠AGD=135°,猜测CE和CF的数量关系,并说明理由;
    (3)如图2,连接DF,若AB=13,CF=17,求DF的长.

    发布:2025/6/20 10:30:1组卷:97引用:1难度:0.1
  • 3.已知:在▱ABCD中,∠BAD=45°,AB=BD,E为BC上一点,连接AE交BD于F,过点D作DG⊥AE于G,延长DG交BC于H

    (1)如图1,若点E与点C重合,且AF=
    5
    ,求AD的长;
    (2)如图2,连接FH,求证:∠AFB=∠HFB;
    (3)如图3,连接AH交BF于M,当M为BF的中点时,请直接写出AF与FH的数量关系.

    发布:2025/6/20 10:30:1组卷:532引用:2难度:0.3
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正