试卷征集
加入会员
操作视频

定义:若一个四边形能被其中的一条对角线分割成两个相似三角形,则称这个四边形为“师梅四边形”,这条对角线称为“师梅线”.我们熟知的平行四边形就是“师梅四边形”.

(1)如图1,BD平分∠ABC,
BD
=
4
2
,BC=10.四边形ABCD是被BD分割成的“师梅四边形”,求AB长;
(2)如图2,平面直角坐标系中,A、B分别是x轴和y轴上的点,且OA=3,OB=2,若点C是直线y=x在第一象限上的一点,且OC是四边形OACB的“师梅线”,求四边形OACB的面积;
(3)如图3,圆内接四边形ABCD中,∠ABC=60°,点E是
ˆ
AC
的中点,连接BE交CD于点F,连接AF,∠DAF=30°,
①求证:四边形ABCF是“师梅四边形”;
②若△ABC的面积为
6
3
,求线段BF的长.

【考点】圆的综合题
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:1177引用:9难度:0.1
相似题
  • 1.如图1,以点O为圆心,半径为4的圆交x轴于A,B两点,交y轴于C,D两点,点P为劣弧AC上的一动点,延长CP交x轴于点E;连接PB,交OC于点F.
    (1)若点F为OC的中点,求PB的长;
    (2)求CP•CE的值;
    (3)如图2,过点O作OH∥AP交PD于点H,当点P在弧AC上运动时,连接AC,PC.试问△APC与△OHD相似吗?说明理由;
    AP
    DH
    的值是否保持不变?若不变,试证明,求出它的值;若发生变化,请说明理由.

    发布:2025/6/24 18:30:1组卷:272引用:1难度:0.5
  • 2.如图,已知⊙O′与x轴交于A、B两点,与y轴交于C、D两点,圆心O′的坐标是(1,-1),半径为
    5

    (1)比较线段AB与CD的大小;
    (2)求A、B、C、D四点的坐标;
    (3)过点D作⊙O′的切线,试求这条切线的解析式.

    发布:2025/6/24 20:0:2组卷:43引用:1难度:0.5
  • 3.下面是“用三角板画圆的切线”的画图过程.
    如图1,已知圆上一点A,画过A点的圆的切线.画法:
    (1)如图2,将三角板的直角顶点放在圆上任一点C(与点A不重合)处,使其一直角边经过点A,另一条直角边与圆交于B点,连接AB;
    (2)如图3,将三角板的直角顶点与点A重合,使一条直角边经过点B,画出另一条直角边所在的直线AD.则直线AD就是过点A的圆的切线.
    请回答:①这种画法是否正确
    (是或否);
    ②你判断的依据是:

    发布:2025/6/25 8:0:1组卷:19引用:1难度:0.4
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正