【基础巩固】(1)如图1,已知AD∥EF∥BC,求证:∠AEB=∠DAE+∠CBE;
【尝试应用】(2)如图2,在四边形ABCD中,AD∥BC,点E是线段CD上一点.∠AEB=70°,∠DAE=30°,求∠CBE的度数;
【拓展提高】(3)如图3,在四边形ABCD中,AD∥BC,点E是线段CD上一点.若AE平分∠DAC,∠CAB=∠ABC.
①试求出∠BAE的度数;
②已知∠AEB=∠ABE,∠EBC=30°,点G是直线AD上的一个动点,连接CG并延长.
2.1若CA恰好平分∠BCD,当CG与四边形ABCD中一边所在直线垂直时,∠ACG=60°或15°或12060°或15°或120°;
2.2如图4,若CG是∠ACD的平分线与BA的延长线交于点F,与AE交于点P,且∠BFC=α°,则∠ADC=2α2α°(用含α的代数式表示).

【考点】几何变换综合题.
【答案】60°或15°或120;2α
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/13 8:0:9组卷:363引用:1难度:0.3
相似题
-
1.观察猜想
(1)如图1,在Rt△ABC中,∠ACB=90°,∠BAC=30°,点D与点C重合,点E在斜边AB上,连接DE,且DE=AE,将线段DE绕点D顺时针旋转90°得到线段DF,连接EF,则=,sin∠ADE=,EFAD
探究证明
(2)在(1)中,如果将点D沿CA方向移动,使CD=AC,其余条件不变,如图2,上述结论是否保持不变?若改变,请求出具体数值:若不变,请说明理由13
拓展延伸
(3)如图3,在△ABC中,∠ACB=90°,∠CAB=a,点D在边AC的延长线上,E是AB上任意一点,连接DE.ED=nAE,将线段DE绕着点D顺时针旋转90°至点F,连接EF.求和sin∠ADE的值分别是多少?(请用含有n,a的式子表示)EFAD发布:2025/6/10 6:30:2组卷:1089引用:6难度:0.1 -
2.在Rt△ABC中,∠C=90°,令∠B=α<30°,线段BC的垂直平分线分别交线段AB、BC于点D,E.
(1)如图1,用等式表示DE和AC之间的数量关系,并证明.
(2)如图2,将射线AC绕点A逆时针旋转2α交线段DE于点F,
①依题意补全图形;
②用等式表示AF,EF,DE之间的数量关系,并证明.发布:2025/6/10 2:0:5组卷:164引用:1难度:0.3 -
3.已知,△ABC和△DEC都是等腰直角三角形,C为它们公共的直角顶点,如图1,D,E分别在BC,AC边上,F是BE的中点,连接CF.
(1)求证:△ACD≌△BCE.
(2)请猜想AD与CF的数量关系和位置关系,并说明理由.
(3)如图2,将△ABC固定不动,△DEC由图1位置绕点C逆时针旋转,旋转角∠BCD=α,(0°<a<90°),旋转过程中,其他条件不变.试判断,AD与CF的关系是否发生改变?若不变,请说明理由;若改变,请求出相关正确结论.发布:2025/6/10 2:30:2组卷:225引用:2难度:0.4