在学习完“探索三角形全等的条件”一节后,小丽总结出很多全等三角形的模型,她设计了以下问题给同桌解决:做一个“U”字形框架PABQ,其中AB=20cm,AP,BQ足够长,PA⊥AB于点A,QB⊥AB于点B,点M从B出发向A运动,点N从B出发向Q运动,速度之比为2:3,运动到某一瞬间两点同时停止,在AP上取点C,使△ACM与△BMN全等,则AC的长度为8或158或15cm.
【考点】全等三角形的应用.
【答案】8或15
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/20 8:30:2组卷:1149引用:7难度:0.5
相似题
-
1.如图,要测量池塘两岸相对的两点A,B的距离,可以在AB的垂线BF上取两点C,D,使BC=CD.再作出BF的垂线DE,使A,C,E三点在一条直线上,通过证明△ABC≌△EDC,得到DE的长就等于AB的长,这里证明三角形全等的依据是( )
发布:2025/6/20 15:0:2组卷:1486引用:13难度:0.5 -
2.如图,两根旗杆间相距20米,某人从点B沿BA走向点A,一段时间后他到达点M,此时他分别仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM.已知旗杆BD的高为12米,该人的运动速度为2米/秒,则这个人运动到点M所用时间是 秒.
发布:2025/6/20 8:30:2组卷:1929引用:6难度:0.5 -
3.我国的纸伞工艺十分巧妙.如图,伞不论张开还是缩拢,伞柄AP始终平分同一平面内两条伞骨所成的角∠BAC,从而保证伞圈D能沿着伞柄滑动.为了证明这个结论,我们的依据是( )
发布:2025/6/20 5:30:3组卷:703引用:13难度:0.9