设函数f(x)和g(x)都是定义在集合M上的函数,对于任意的x∈M,都有f(g(x))=g(f(x))成立,称函数f(x)与g(x)在M上互为“H函数”.
(1)函数f(x)=2x与g(x)=sinx在M上互为“H函数”,求集合M;
(2)若函数f(x)=ax(a>0且a≠1)与g(x)=x+1在集合M上互为“H函数”,求证:a>1;
(3)函数f(x)=x+2与g(x)在集合M={x|x>-1}且x≠2k-3,k∈N*}上互为“H函数”,当0≤x<1时,g(x)=log2(x+1),且g(x)在(-1,1)上是偶函数,求函数g(x)在集合M上的解析式.
【考点】函数与方程的综合运用;函数解析式的求解及常用方法.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:105引用:4难度:0.1