当前位置:
试题详情
如果数列{an}满足:a1+a2+a3+…+an=0且|a1|+|a2|+|a3|+…+|an|=1(n≥3,n∈N*),则称数列{an}为n阶“归化数列”.
(1)若某4阶“归化数列”{an}是等比数列,写出该数列的各项;
(2)若某11阶“归化数列”{an}是等差数列,求该数列的通项公式;
(3)若{an}为n阶“归化数列”,求证:a1+12a2+13a3+…+1nan≤12-12n.
1
2
1
3
1
n
1
2
1
2
n
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/12/29 3:0:1组卷:256引用:5难度:0.5
相似题
-
1.已知等比数列{xn}的各项为不等于1的正数,数列{yn}满足
(a>0,且a≠1),设y3=18,y6=12.ynlogaxn=2
(1)数列{yn}的前多少项和最大,最大值是多少?
(2)试判断是否存在自然数M,使得n>M时,xn>1恒成立,若存在,求出最小的自然数M,若不存在,请说明理由.发布:2025/1/14 8:0:1组卷:11引用:1难度:0.1 -
2.古印度数学家婆什伽罗在《丽拉沃蒂》一书中提出如下问题:某人给一个人布施,初日施2子安贝(古印度货币单位),以后逐日倍增,问一月共施几何?在这个问题中,以一个月31天计算,记此人第n日布施了an子安贝(其中1≤n≤31,n∈N*),数列{an}的前n项和为Sn.若关于n的不等式
恒成立,则实数t的取值范围为( )Sn-62<a2n+1-tan+1发布:2024/12/9 14:30:1组卷:53引用:3难度:0.6 -
3.已知等比数列{an}的前n项和为Sn,
,则使得不等式Sn+1+1=4an(n∈N*)成立的正整数m的最大值为( )am+am+1+…+am+k-am+1Sk<2023(k∈N*)发布:2024/12/7 11:0:2组卷:216引用:4难度:0.5