【阅读理解】
数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们进行推理,获得结论.初中数学里的一些代数公式,很多都可以借助几何图形进行直观推导和解释.
例如:求1+2+3+4+…+n的值(其中n是正整数).
如果采用数形结合的方法,即用图形的性质来说明数量关系的事实,那就非常的直观.现利用图形的性质来求1+2+3+4+…+n的值,方案如下:如图1,斜线左边的三角形图案是由上到下每层依次分别为1,2,3,…,n个小圆圈排列组成的.而组成整个三角形小圆圈的个数恰为所求式子1+2+3+4+…+n的值.为求式子的值,现把左边三角形倒放于斜线右边,与原三角形组成一个平行四边形.此时,组成平行四边形的小圆圈共有n行,每行有(n+1)个小圆圈,所以组成平行四边形小圆圈的总个数为n(n+1)个,因此,组成一个三角形小圆圈的个数为n(n+1)2,即1+2+3+4+⋯+n=n(n+1)2.

【问题提出】
求13+23+33+⋯+n3的值(其中n是正整数).
【问题解决】
为解决上述问题,我们借鉴已有的经验,采用由特殊到一般,归纳的研究方法,利用数形结合法,借助图形进行推理获得结论.
探究1
如图2,13可以看成1个1×1的正方形的面积,即13=1×12=12.
探究2
如图3,A表示1个1×1的正方形,其面积为:1×12=13;B表示1个2×2的正方形,其面积为:1×22;C,D分别表示1个1×2的长方形,其面积的和为:2×1×2=1×22;B,C,D的面积和为1×22+1×22=(1+1)×22=23,而A,B,C,D恰好可以拼成一个(1+2)×(1+2)的大正方形.
由此可得:13+23=(1+2)2=32.
探究3
请你类比上述探究过程,借助图形探究:13+23+33=(1+2+3)2(1+2+3)2=6262.(要求自己构造图形并写出推证过程)
【结论归纳】
将上述探究过程发现的规律,推广到一般情况中去,通过归纳,我们便可以得到:13+23+33+⋯+n3=(1+2+3+•••+n)2(1+2+3+•••+n)2=
.(要求直接写出结论,不必写出推证过程)
【结论应用】
图4是由若干个棱长为1的小正方体搭成的大正方体,图中大小正方体一共有多少个?
为了准确数出大小正方体的总个数,我们可以分类统计,即数出棱长分别是1,2,3,4,5,6的正方体的个数,再求总和.
例如:棱长是1的正方体有:6×6×6=63个,
棱长是2的正方体有:5×5×5=53个,
…
棱长是6的正方体有:1×1×1=13个;

然后利用上面归纳的结论,通过计算,可得图4中大小正方体的个数为 441441.
【逆向应用】
如果由若干个棱长为1的小正方体搭成的大正方体中,大小正方体一共有36100个,那么棱长为1的小正方体的个数为 68596859.
【拓展探究】
观察下列各式:13=1;23=3+5;33=7+9+11;43=13+15+17+19;⋯⋯
若m3(m为正整数)按上面规律展开后,发现等式右边含有“2021”这个数,则m的值 m≥45m≥45.
n
(
n
+
1
)
2
n
(
n
+
1
)
2


【答案】(1+2+3)2;62;(1+2+3+•••+n)2;
;441;6859;m≥45

【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:547引用:1难度:0.3
相似题
-
1.阅读下列题目的解题过程:
已知a、b、c为△ABC的三边长,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.
解:∵a2c2-b2c2=a4-b4(A)
∴c2(a2-b2)=(a2+b2)(a2-b2) (B)
∴c2=a2+b2(C)
∴△ABC是直角三角形
问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:;
(2)错误的原因为:;
(3)本题正确的结论为:.发布:2024/12/23 18:0:1组卷:2618引用:25难度:0.6 -
2.若a是整数,则a2+a一定能被下列哪个数整除( )
发布:2024/12/24 6:30:3组卷:416引用:7难度:0.6 -
3.阅读理解:
能被7(或11或13)整除的特征:如果一个自然数末三位所表示的数与末三位以前的数字所表示的数之差(大数减小数)是7(或11或13)的倍数,则这个数就能被7(或11或13)整除.
如:456533,533-456=77,77是7的11倍,所以,456533能被7整除.又如:345548214,345548-214=345334,345-334=11,11是11的1倍,所以,345548214能被11整除.
(1)用材料中的方法验证67822615是7的倍数(写明验证过程);
(2)若对任意一个七位数,末三位所表示的数与末三位以前的数字所表示的数之差(大数减小数)是11的倍数,证明这个七位数一定能被11整除.发布:2025/1/5 8:0:1组卷:134引用:3难度:0.4