试卷征集
加入会员
操作视频

如图,已知平面直角坐标系内,点A(2,0),点B(0,2
3
),连接AB.动点P从点B出发,沿线段BO向O运动,到达O点后立即停止,速度为每秒
3
个单位,设运动时间为t秒.
(1)当点P运动到OB中点时,求此时AP的解析式;
(2)在(1)的条件下,若第二象限内有一点Q(a,3),当S△ABQ=S△ABP时,求a的值;
(3)如图2,当点P从B点出发运动时,同时有点M从A出发,以每秒1个单位的速度沿直线x=2向上运动,点P停止运动时,点M也立即停止运动.过点P作PN⊥y轴交AB于点N.在运动过程中,是否存在t,使得△AMN为等腰三角形?若存在,求出此时的t值,若不存在,说明理由.

【考点】三角形综合题
【答案】(1)y=-
3
2
x+
3
;(2)1-
3
;(3)t=
24
-
4
3
11
4
3
或8-4
3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:414引用:2难度:0.4
相似题
  • 1.如图,等边△ABC中,D,E分别是AC,BC边上的点,且BE=CD,连接AE,BD相交于点P,点F在BC的延长线上,且∠CAF=2∠CBD,现给出以下结论:
    ①AE=BD;
    ②∠APG=60°;
    ③DG=2CD;
    ④CF=CD+GF.
    其中正确的是
    .(填序号)

    发布:2025/6/9 14:0:1组卷:480引用:3难度:0.3
  • 2.在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.
    (1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=
    度;
    (2)如图2,当点D在线段BC上,如果∠BAC=60°,则∠BCE=
    度;
    (3)设∠BAC=α,∠BCE=β
    ①如图3,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;
    ②当点D在直线BC上移动,请直接写出α,β之间的数量关系,不用证明.

    发布:2025/6/9 13:0:1组卷:632引用:7难度:0.3
  • 3.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限内一点,CB⊥y轴交y轴负半轴于B(0,b),且|a-3|+(b+4)2=0,S四边形AOBC=16.

    (1)求点C的坐标.
    (2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数;(点E在x轴的正半轴).
    (3)如图3,当点D在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则点D在运动过程中,∠N的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由.

    发布:2025/6/9 14:0:1组卷:1193引用:6难度:0.2
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正