2022世界乒乓球团体锦标赛将于2022年9月30日至10月9日在成都举行.近年来,乒乓球运动已成为国内民众喜爱的运动之一.今有甲、乙两选手争夺乒乓球比赛冠军,比赛采用三局两胜制,即某选手率先获得两局胜利时比赛结束.根据以往经验,甲、乙在一局比赛获胜的概率分别为23、13,且每局比赛相互独立.
(1)求甲获得乒乓球比赛冠军的概率;
(2)比赛开始前,工作人员买来两盒新球,分别为“装有2个白球与1个黄球”的白盒与“装有1个白球与2个黄球”的黄盒.每局比赛前裁判员从盒中随机取出一颗球用于比赛,且局中不换球,该局比赛后,直接丢弃.裁判按照如下规则取球:每局取球的盒子颜色与上一局比赛用球的颜色一致,且第一局从白盒中取球.记甲、乙决出冠军后,两盒内白球剩余的总数为X,求随机变量X的分布列与数学期望.
2
3
1
3
【考点】离散型随机变量的均值(数学期望).
【答案】(1);
(2)分布列见详解;.
20
27
(2)分布列见详解;
47
27
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:303引用:4难度:0.5
相似题
-
1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
(Ⅰ)求获得复赛资格的人数;
(Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
(Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).发布:2024/12/29 13:30:1组卷:133引用:7难度:0.5 -
2.设离散型随机变量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 发布:2024/12/29 13:0:1组卷:196引用:6难度:0.5 -
3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为( )
发布:2024/12/29 13:30:1组卷:137引用:6难度:0.7