如图,抛物线y=-38x2+34x+3与x轴相交于点A,点B(A在B的左侧),与y轴相交于点C,连接AC,BC.
(1)求△ABC的面积;
(2)如图,点P是第一象限内抛物线上的动点,过点P作PE∥y轴,交直线BC于点E,当PE+45CE有最大值时,求PE+45CE的最大值与点P的坐标;
(3)将抛物线y=-38x2+34x+3向右平移2个单位得到新抛物线y′,点F为原抛物线y与新抛物线y′的交点,点M是原抛物线y对称轴上一点,当△AFM是以FM为腰的等腰三角形时,直接写出点M的坐标.

3
8
x
2
+
3
4
4
5
4
5
3
8
x
2
+
3
4
【考点】二次函数综合题.
【答案】(1)9;(2)的最大值为:,此时,点P(,);(3)点M的坐标为:(1,3+2)或(1,3-2)或(1,).
PE
+
4
5
CE
25
6
10
3
4
3
6
6
1
6
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:374引用:1难度:0.3
相似题
-
1.如图,在平面直角坐标系中,矩形ABCD的边BC与x轴、y轴的交点分别为C(8,0),B(0,6),CD=5,抛物线y=ax2-
x+c(a≠0)过B,C两点,动点M从点D开始以每秒5个单位长度的速度沿D→A→B→C的方向运动到达C点后停止运动.动点N从点O以每秒4个单位长度的速度沿OC方向运动,到达C点后,立即返回,向CO方向运动,到达O点后,又立即返回,依此在线段OC上反复运动,当点M停止运动时,点N也停止运动,设运动时间为t.154
(1)求抛物线的解析式;
(2)求点D的坐标;
(3)当点M,N同时开始运动时,若以点M,D,C为顶点的三角形与以点B,O,N为顶点的三角形相似,直接写出t的值.发布:2025/6/7 16:30:2组卷:39引用:2难度:0.1 -
2.如图1,抛物线y=ax2+bx+4与x轴交于A,B两点,与y轴交于点C,AB=8,B点横坐标为2,延长矩形OBDC的DC边交抛物线于E.
(1)求抛物线的解析式;
(2)如图2,若点P是直线EO上方的抛物线上的一个动点,过点P作x轴的垂线交直线EO于点M,求PM的最大值;
(3)如图3,如果点F是抛物线对称轴l上一点,抛物线上是否存在点G,使得以F,G,A,C为顶点的四边形是平行四边形?若存在,求出所有满足条件的点G的坐标;若不存在,请说明理由.发布:2025/6/7 7:0:1组卷:565引用:8难度:0.1 -
3.在平面直角坐标系中,直线AB与抛物线y=ax2+bx+c交于A,B(点A在点B的左侧)两点,点C是该抛物线上任意一点,过C点作平行于y轴的直线交AB于D,分别过点A,B作直线CD的垂线,垂足分别为点E,F.
特例感悟:
(1)已知:a=-2,b=4,c=6.
①如图①,当点C的横坐标为2,直线AB与x轴重合时,CD=,|a|•AE•BF=.
②如图②,当点C的横坐标为1,直线AB∥x轴且过抛物线与y轴的交点时,CD=,|a|•AE•BF=.
③如图③,当点C的横坐标为2,直线AB的解析式为y=x-3时,CD=,|a|•AE•BF=.
猜想论证:
(2)由(1)中三种情况的结果,请你猜想在一般情况下CD与|a|•AE•BF之间的数量关系,并证明你的猜想.拓展应用.
(3)若a=-1,点A,B的横坐标分别为-4,2,点C在直线AB的上方的抛物线上运动(点C不与点A,B重合),在点C的运动过程中,利用(2)中的结论求出△ACB的最大面积.发布:2025/6/7 7:0:1组卷:21引用:2难度:0.3