如图,抛物线y=-38x2+34x+3与x轴相交于点A,点B(A在B的左侧),与y轴相交于点C,连接AC,BC.
(1)求△ABC的面积;
(2)如图,点P是第一象限内抛物线上的动点,过点P作PE∥y轴,交直线BC于点E,当PE+45CE有最大值时,求PE+45CE的最大值与点P的坐标;
(3)将抛物线y=-38x2+34x+3向右平移2个单位得到新抛物线y′,点F为原抛物线y与新抛物线y′的交点,点M是原抛物线y对称轴上一点,当△AFM是以FM为腰的等腰三角形时,直接写出点M的坐标.

3
8
x
2
+
3
4
4
5
4
5
3
8
x
2
+
3
4
【考点】二次函数综合题.
【答案】(1)9;(2)的最大值为:,此时,点P(,);(3)点M的坐标为:(1,3+2)或(1,3-2)或(1,).
PE
+
4
5
CE
25
6
10
3
4
3
6
6
1
6
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:374引用:1难度:0.3
相似题
-
1.如图,抛物线y=-
x2+bx+c与x轴交于A(-1,0),B(4,0),与y轴交于点C.连接AC,BC,点P在抛物线上运动.12
(1)求抛物线的表达式;
(2)若点P在第四象限,点Q在PA的延长线上,当∠CAQ=∠CBA+45°时,求点P的坐标.发布:2025/6/7 20:0:2组卷:80引用:1难度:0.2 -
2.如图①,定义:直线l:y=mx+n(m<0,n>0)与x,y轴分别相交于A,B两点.将△AOB绕着点O逆时针旋转90°得到△COD,过点A,B,D的抛物线P叫作直线l的“纠缠抛物线”,反之,直线l叫做抛物线P的“纠缠直线”,两线“互为纠缠线”.
(1)已知直线l:y=-2x+2,则它的纠缠抛物线P的函数解析式是 .
(2)判断y=-2x+2k与是否“互为纠缠线”并说明理由.y=-1kx2-x+2k
(3)如图②,已知直线l:y=-2x+4,它的纠缠抛物线P的对称轴与CD相交于点E.点F在直线l上.点Q在抛物线P的对称轴上,当以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形时,直接写出点Q的坐标.发布:2025/6/7 21:0:1组卷:47引用:1难度:0.3 -
3.如图,抛物线y=ax2+bx与x轴交于点A(-2,0),与反比例函数y=
图象交于点B,过点B作BQ⊥y轴于点Q,BQ=1.3x
(1)求抛物线的表达式;
(2)若点P是抛物线对称轴上一点,当BP+OP的值最小时,求线段QP的长;
(3)若点M是平面直角坐标系内任意一点,在抛物线的对称轴上是否存在一点D,使得以A,B,D,M为顶点的四边形是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由.发布:2025/6/7 17:30:1组卷:37引用:1难度:0.4