某学习小组开展了图形旋转的探究活动:将一个矩形ABCD绕点A顺时针旋转α(0°<α≤90°),得到矩形AB'C'D',连结BD.
(1)如图1,当α=90°时,点C'恰好在DB延长线上.若AB=2,求BC的长.
(2)如图2,连结AC',过点D'作D'M∥AC'交BD于点M.观察思考线段D'M与DM数量关系并说明理由.
(3)在(2)的条件下,射线DB交AC'于点N(如图3),若∠BDA=30°,旋转角α等于多少度时△AMN是等边三角形,请写出α的值,并说明△AMN是等边三角形的理由.

【考点】四边形综合题.
【答案】(1)BC=1+;
(2)D'M=DM,理由见解析过程;
(3)当α=60°时,△AMN是等边三角形,理由见解析过程.
5
(2)D'M=DM,理由见解析过程;
(3)当α=60°时,△AMN是等边三角形,理由见解析过程.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:433引用:3难度:0.3
相似题
-
1.如图,在正方形ABCD中,点G为BC边上的动点,点H为CD边上的动点,且满足BG+DH=HG,连接AH,AG分别交正方形ABCD的对角线BD于F,E两点,则下列结论中正确的有 .(填序号即可)
①∠DHA=∠GHA;②AF•AH=AE•AG;③BE+DF=EF;④AH=AE2发布:2025/5/24 5:30:2组卷:250引用:1难度:0.3 -
2.等腰Rt△BEF中,∠BEF=90°,BE=EF,先将△BEF绕正方形ABCD的顶点B旋转,再平移线段BE至AG位置,连接DF,GF.
(1)如图1,当点E落在BC上时,直接写出DF、GF的数量关系.
(2)如图2,当点E不在BC上时,(1)中的结论是否依然成立,若成立,请证明,若不成立,请说明理由;
(3)连接AE,若,BE=2,在△BEF绕点B旋转的过程中,当A、G、F三点共线时,直接写出线段AE的长度.AB=25发布:2025/5/24 5:30:2组卷:272引用:2难度:0.2 -
3.如图1,在矩形ABCD中,AB=3,AD=4.P为对角线BD上的点,过点P作PM⊥AD于点M,PN⊥BD交BC于点N,Q是M关于PD的对称点,连结PQ,QN.
(1)如图2,当Q落在BC上时,求证:BQ=MD.
(2)是否存在△PNQ为等腰三角形的情况?若存在,求MP的长;若不存在,请说明理由.
(3)若射线MQ交射线DC于点F,当PQ⊥QN时,求DF:FC的值.发布:2025/5/24 6:0:2组卷:366引用:3难度:0.1