试卷征集
加入会员
操作视频

冰雪运动是深受学生喜爱的一项户外运动,为了研究性别与学生是否喜爱冰雪运动之间的关系,从某高校男、女生中各随机抽取100名进行问卷调查,得到如下列联表(m≤40,m∈N).
喜爱 不喜爱
男生 80-m 20+m
女生 60+m 40-m
(1)当m=0时,从样本中不喜爱冰雪运动的学生中,按性别采用分层抽样的方法抽取6人,再从这6人中随机抽取3人调研不喜爱的原因,记这3人中女生的人数为ξ,求ξ的分布列与数学期望.
(2)定义
K
2
=∑
A
i
,
j
-
B
i
,
j
2
B
i
,
j
2
i
3
2
j
3
i
,
j
N
,其中Ai,j为列联表中第i行第j列的实际数据,Bi,j为列联表中第i行与第j列的总频率之积再乘以列联表的总额数得到的理论频数,如A2,2=80-m,
B
2
2
=
100
200
×
140
200
×
200
=
70
.基于小概率值α的检验规则:首先提出零假设H0(变量X,Y相互独立),然后计算K2的值,当K2≥xα时,我们推断H0不成立,即认为X和Y不独立,该推断犯错误的概率不超过α;否则,我们没有充分证据推断H0不成立,可以认为X和Y独立.根据K2的计算公式,求解下面问题:
①当m=0时,依据小概率值α=0.005的独立性检验,分析性别与是否喜爱冰雪运动有关?
②当m<10时,依据小概率值α=0.1的独立性检验,若认为性别与是否喜爱冰雪运动有关,则至少有多少名男生喜爱冰雪运动?
附:
α 0.1 0.025 0.005
xα 2.706 5.024 7.879

【答案】(1)分布列见解析;期望为2;
(2)①答案见解析;②76名.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:22引用:2难度:0.5
相似题
  • 1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
    (Ⅰ)求获得复赛资格的人数;
    (Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
    (Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).

    发布:2024/12/29 13:30:1组卷:134引用:7难度:0.5
  • 2.设离散型随机变量X的分布列如表:
    X 1 2 3 4 5
    P m 0.1 0.2 n 0.3
    若离散型随机变量Y=-3X+1,且E(X)=3,则(  )

    发布:2024/12/29 13:0:1组卷:199引用:6难度:0.5
  • 3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为(  )

    发布:2024/12/29 13:30:1组卷:139引用:6难度:0.7
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正